scispace - formally typeset
Search or ask a question
Author

Benjamin Kroposki

Bio: Benjamin Kroposki is an academic researcher from National Renewable Energy Laboratory. The author has contributed to research in topics: Distributed generation & Photovoltaic system. The author has an hindex of 32, co-authored 100 publications receiving 5144 citations. Previous affiliations of Benjamin Kroposki include National Institute of Technology, Rourkela & University of Valle.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors define what it means to achieve a 100% renewable grid and what it takes to achieve this goal, and how to achieve it in a large-scale manner.
Abstract: What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

808 citations

Journal ArticleDOI
TL;DR: An overview of the microgrid operation is given in this paper, where the authors provide an overview of microgrid testing experiences from different counties in the US and provide a comparison of the performance of different microgrid systems.
Abstract: Distributed energy resources including distributed generation and distributed storage are sources of energy located near local loads and can provide a variety of benefits including improved reliability if they are properly operated in the electrical distribution system. Microgrids are systems that have at least one distributed energy resource and associated loads and can form intentional islands in the electrical distribution systems. This paper gives an overview of the microgrid operation. Microgrid testing experiences from different counties was also provided.

628 citations

Journal ArticleDOI
14 Apr 2017-Science
TL;DR: This work assesses realistic future scenarios and makes suggestions for a global agenda to move toward PVs at a multi-TW scale.
Abstract: The annual potential of solar energy far exceeds the world's total energy consumption. However, the vision of photovoltaics (PVs) providing a substantial fraction of global electricity generation and total energy demand is far from being realized. What technical, infrastructure, economic, and policy barriers need to be overcome for PVs to grow to the multiple terawatt (TW) scale? We assess realistic future scenarios and make suggestions for a global agenda to move toward PVs at a multi-TW scale.

303 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the system integration issues associated with distributed energy systems and show the benefits of using power electronic interfaces for such applications, and show that using PE interfaces for DE systems can increase functionality through improved power quality and voltage/volt-ampere reactive support.
Abstract: With the increasing use of distributed energy (DE) systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for DE applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/volt-ampere reactive (VAR) support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper will examine the system integration issues associated with DE systems and show the benefits of using PE interfaces for such applications.

303 citations

Proceedings ArticleDOI
01 Nov 2008
Abstract: Distributed generation can have an impact on distribution feeder voltage regulation, and distributed solar photovoltaics (PV) are no exception As the penetration level of solar PV rises over the coming decades, reverse power flow on the distribution feeder will happen more frequently and the associated voltage rise might lead to violations of voltage boundaries defined by ANSI C841 The severity of possible voltage problems depends on the relative size and location of distributed PV generation and loads, distribution feeder topology, and method of voltage regulation In this paper, an illustrative distribution system feeder is assumed, and various case studies are conducted The performance of the commonly used distribution voltage regulation methods under reverse power flow are investigated and presented Voltage performance of the feeder, and the flow of active and reactive power are studied under different loading assumptions, and different assumptions of PV inverters' participation The paper also explores the system performance using coordinated controls of inverters and utility equipment

273 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations

Journal ArticleDOI
TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.

2,790 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations

Journal ArticleDOI
TL;DR: The Scope of Review: Large-Scale Centralized Energy Storage, Chemical Energy Storage: Solar Fuels, and Capacitors 6486 5.1.2.
Abstract: 1. Setting the Scope of the Challenge 6474 1.1. The Need for Solar Energy Supply and Storage 6474 1.2. An Imperative for Discovery Research 6477 1.3. Scope of Review 6478 2. Large-Scale Centralized Energy Storage 6478 2.1. Pumped Hydroelectric Energy Storage (PHES) 6479 2.2. Compressed Air Energy Storage (CAES) 6480 3. Smaller Scale Grid and Distributed Energy Storage 6481 3.1. Flywheel Energy Storage (FES) 6481 3.2. Superconducting Magnetic Energy Storage 6482 4. Chemical Energy Storage: Electrochemical 6482 4.1. Batteries 6482 4.1.1. Lead-Acid Batteries 6483 4.1.2. Alkaline Batteries 6484 4.1.3. Lithium-Ion Batteries 6484 4.1.4. High-Temperature Sodium Batteries 6484 4.1.5. Liquid Flow Batteries 6485 4.1.6. Metal-Air Batteries 6485 4.2. Capacitors 6485 5. Chemical Energy Storage: Solar Fuels 6486 5.1. Solar Fuels in Nature 6486 5.2. Artificial Photosynthesis and General Considerations of Water Splitting 6486

2,570 citations

Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

2,358 citations