scispace - formally typeset
Search or ask a question
Author

Benjamin L. Schulz

Bio: Benjamin L. Schulz is an academic researcher from University of Queensland. The author has contributed to research in topics: Galaxy & Glycosylation. The author has an hindex of 84, co-authored 348 publications receiving 24069 citations. Previous affiliations of Benjamin L. Schulz include ETH Zurich & University of Hawaii.


Papers
More filters
Journal ArticleDOI
Matthew Joseph Griffin, Alain Abergel1, A. Abreu, Peter A. R. Ade2  +186 moreInstitutions (27)
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Abstract: The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz) The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 03 K The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired The spectrometer has an approximately circular field of view with a diameter of 26' The spectral resolution can be adjusted between 12 and 25 GHz by changing the stroke length of the FTS scan mirror Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 15-2

2,425 citations

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen9, Matthieu Béthermin9, Matthieu Béthermin7, Andrew Blain2, Alessandro Boselli10, C. Bridge2, Drew Brisbin11, V. Buat10, Denis Burgarella10, N. Castro-Rodríguez12, N. Castro-Rodríguez13, Antonio Cava14, P. Chanial7, Michele Cirasuolo15, David L. Clements8, A. Conley16, L. Conversi4, Asantha Cooray17, Asantha Cooray2, C. D. Dowell2, C. D. Dowell3, Elizabeth Dubois1, Eli Dwek18, Simon Dye19, Stephen Anthony Eales20, David Elbaz7, Duncan Farrah1, A. Feltre21, P. Ferrero13, P. Ferrero12, N. Fiolet22, N. Fiolet9, M. Fox8, Alberto Franceschini21, Walter Kieran Gear20, E. Giovannoli10, Jason Glenn16, Yan Gong17, E. A. González Solares23, Matthew Joseph Griffin20, Mark Halpern24, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis10, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar15, O. Ilbert10, K. G. Isaak25, Rob Ivison15, Rob Ivison6, Guilaine Lagache9, E. Le Floc'h7, L. R. Levenson2, L. R. Levenson3, B. Lo Faro21, Nanyao Y. Lu2, S. C. Madden7, Bruno Maffei26, Georgios E. Magdis7, G. Mainetti21, Lucia Marchetti21, G. Marsden24, J. Marshall3, J. Marshall2, A. M. J. Mortier8, Hien Nguyen2, Hien Nguyen3, B. O'Halloran8, Alain Omont22, Mat Page27, P. Panuzzo7, Andreas Papageorgiou20, H. Patel8, Chris Pearson28, Chris Pearson29, Ismael Perez-Fournon13, Ismael Perez-Fournon12, Michael Pohlen20, Jonathan Rawlings27, Gwenifer Raymond20, Dimitra Rigopoulou28, Dimitra Rigopoulou30, L. Riguccini7, D. Rizzo8, Giulia Rodighiero21, Isaac Roseboom1, Isaac Roseboom6, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz2, Douglas Scott24, Nick Seymour27, Nick Seymour31, D. L. Shupe2, A. J. Smith1, Jamie Stevens32, M. Symeonidis27, Markos Trichas33, K. E. Tugwell27, Mattia Vaccari21, Ivan Valtchanov4, Joaquin Vieira2, Marco P. Viero2, L. Vigroux22, Lifan Wang1, Robyn L. Ward1, Julie Wardlow17, G. Wright15, C. K. Xu2, Michael Zemcov3, Michael Zemcov2 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ∼380deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg^2. Fields range in size from 0.01 to ∼20 deg^2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best-studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

852 citations

Journal ArticleDOI
Sergio Molinari1, B. Swinyard, John Bally2, M. J. Barlow3, J.-P. Bernard4, Paul Martin5, Toby J. T. Moore6, Alberto Noriega-Crespo7, Rene Plume8, Leonardo Testi9, Leonardo Testi1, Annie Zavagno10, Alain Abergel11, Babar Ali7, L. D. Anderson10, Ph. André12, J.-P. Baluteau10, Cara Battersby2, M. T. Beltrán1, M. Benedettini1, N. Billot7, J. A. D. L. Blommaert13, Sylvain Bontemps12, Sylvain Bontemps14, F. Boulanger11, Jan Brand1, Christopher M. Brunt15, Michael G. Burton16, Luca Calzoletti, Sean Carey7, Paola Caselli17, Riccardo Cesaroni1, José Cernicharo18, Sukanya Chakrabarti, Antonio Chrysostomou, Martin Cohen, Mathieu Compiegne5, P. de Bernardis19, G. de Gasperis20, A. M. di Giorgio1, Davide Elia1, F. Faustini, Nicolas Flagey7, Yasuo Fukui21, Gary A. Fuller22, K. Ganga23, Pedro García-Lario, Jason Glenn2, Paul F. Goldsmith24, Matthew Joseph Griffin25, Melvin Hoare17, Maohai Huang26, D. Ikhenaode19, C. Joblin4, G. Joncas27, Mika Juvela28, Jason M. Kirk25, Guilaine Lagache11, Jin-Zeng Li26, T. L. Lim, S. D. Lord7, Massimo Marengo29, Douglas J. Marshall4, Silvia Masi19, Fabrizio Massi1, Mikako Matsuura3, Vincent Minier12, Marc-Antoine Miville-Deschenes11, L. Montier4, L. K. Morgan6, Frédérique Motte12, Joseph C. Mottram15, T. G. Müller30, Paolo Natoli20, J. Neves31, Luca Olmi1, Roberta Paladini7, Deborah Paradis7, Harriet Parsons31, Nicolas Peretto12, Nicolas Peretto22, M. R. Pestalozzi1, Stefano Pezzuto1, F. Piacentini19, Lorenzo Piazzo19, D. Polychroni1, M. Pomarès10, Cristina Popescu30, William T. Reach7, Isabelle Ristorcelli4, Jean-François Robitaille27, Thomas P. Robitaille29, J. A. Rodón10, A. Roy5, Pierre Royer13, D. Russeil10, Paolo Saraceno1, Marc Sauvage12, Peter Schilke32, Eugenio Schisano1, Nicola Schneider12, Frederic Schuller, Benjamin L. Schulz7, B. Sibthorpe25, Hazel Smith29, Michael D. Smith33, L. Spinoglio1, Dimitrios Stamatellos25, Francesco Strafella, Guy S. Stringfellow2, E. Sturm30, R. Taylor8, Mark Thompson31, Alessio Traficante20, Richard J. Tuffs30, Grazia Umana1, Luca Valenziano1, R. Vavrek, M. Veneziani19, Serena Viti3, C. Waelkens13, Derek Ward-Thompson25, Glenn J. White34, L. A. Wilcock25, Friedrich Wyrowski, Harold W. Yorke24, Qizhou Zhang29 
TL;DR: In this paper, the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands, were presented.
Abstract: We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2° × 2° tiles approximately centered at l = 30° and l = 59°. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around AV ~ 1 is exceeded for the regions in the l = 59° field; a AV value between 5 and 10 is found for the l = 30° field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.

752 citations

Journal ArticleDOI
Sergio Molinari, B. Swinyard, John Bally, M. J. Barlow, J.-P. Bernard, Paul Martin, Toby J. T. Moore, Alberto Noriega-Crespo, Rene Plume, Leonardo Testi, Annie Zavagno, A. Abergel, Babar Ali, L. D. Anderson, Pascal André, Jean-Paul Baluteau, Cara Battersby, M. T. Beltrán, M. Benedettini, N. Billot, J. A. D. L. Blommaert, Sylvain Bontemps, F. Boulanger, Jan Brand, Christopher M. Brunt, Michael G. Burton, Luca Calzoletti, Sean Carey, Paola Caselli, Riccardo Cesaroni, José Cernicharo, Sukanya Chakrabarti, Antonio Chrysostomou, Martin Cohen, Mathieu Compiegne, P. de Bernardis, G. de Gasperis, A. M. di Giorgio, Davide Elia, F. Faustini, Nicolas Flagey, Yasuo Fukui, Gary A. Fuller, K. Ganga, Pedro García-Lario, Jason Glenn, Paul F. Goldsmith, Matthew Joseph Griffin, Melvin Hoare, Maohai Huang, D. Ikhenaode, C. Joblin, G. Joncas, Mika Juvela, Jason M. Kirk, Guilaine Lagache, Jin-Zeng Li, T. L. Lim, S. D. Lord, Massimo Marengo, D. J. Marshall, Silvia Masi, Fabrizio Massi, Mikako Matsuura, Vincent Minier, Marc-Antoine Miville-Deschenes, L. Montier, L. K. Morgan, Frédérique Motte, Joseph C. Mottram, T. Mueller, Paolo Natoli, J. Neves, Luca Olmi, R. Paladini, D. Paradis, Harriet Parsons, Nicolas Peretto, M. R. Pestalozzi, Stefano Pezzuto, F. Piacentini, Lorenzo Piazzo, D. Polychroni, M. Pomarès, Cristina Popescu, William T. Reach, Isabelle Ristorcelli, Jean-François Robitaille, Thomas P. Robitaille, J. A. Rodón, A. Roy, Pierre Royer, D. Russeil, P. Saraceno, Marc Sauvage, Peter Schilke, Eugenio Schisano, Nicola Schneider, Frederic Schuller, Benjamin L. Schulz, B. Sibthorpe, Howard A. Smith, Michael D. Smith, L. Spinoglio, Dimitrios Stamatellos, Francesco Strafella, Guy S. Stringfellow, E. Sturm, Russell H. Taylor, Maggie A. Thompson, Alessio Traficante, Richard J. Tuffs, Grazia Umana, Luca Valenziano, R. Vavrek, M. Veneziani, Serena Viti, C. Waelkens, Derek Ward-Thompson, Glenn J. White, L. A. Wilcock, Friedrich Wyrowski, H. W. Yorke, Qizhou Zhang 
TL;DR: In this paper, the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key-project that will map the inner Galactic Plane of the Milky Way in 5 bands are presented.
Abstract: We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key-project that will map the inner Galactic Plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2{\deg} x 2{\deg} tiles approximately centered at l=30{\deg} and l=59{\deg}. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call 'cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A_V of about 1 is exceeded for the regions in the l=59{\deg} field; a A_V value between 5 and 10 is found for the l=30{\deg} field, likely due to the relatively larger distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.

735 citations

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen, Matthieu Béthermin7, Andrew Blain2, Alessandro Boselli9, C. Bridge2, Drew Brisbin10, V. Buat9, Denis Burgarella9, N. Castro-Rodríguez11, N. Castro-Rodríguez12, Antonio Cava13, P. Chanial7, Michele Cirasuolo14, David L. Clements8, A. Conley15, L. Conversi4, Asantha Cooray16, Asantha Cooray2, C. D. Dowell2, C. D. Dowell3, Elizabeth Dubois1, Eli Dwek17, Simon Dye18, Stephen Anthony Eales19, David Elbaz7, Duncan Farrah1, A. Feltre20, P. Ferrero12, P. Ferrero11, N. Fiolet21, M. Fox8, Alberto Franceschini20, Walter Kieran Gear19, E. Giovannoli9, Jason Glenn15, Yan Gong16, E. A. González Solares22, Matthew Joseph Griffin19, Mark Halpern23, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis9, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar14, O. Ilbert9, K. G. Isaak24, Rob Ivison6, Rob Ivison14, Guilaine Lagache, E. Le Floc'h7, L. R. Levenson2, L. R. Levenson3, B. Lo Faro20, Nanyao Y. Lu2, S. C. Madden7, Bruno Maffei25, Georgios E. Magdis7, G. Mainetti20, Lucia Marchetti20, G. Marsden23, J. Marshall2, J. Marshall3, A. M. J. Mortier8, Hien Nguyen3, Hien Nguyen2, B. O'Halloran8, Alain Omont21, Mat Page26, P. Panuzzo7, Andreas Papageorgiou19, H. Patel8, Chris Pearson27, Chris Pearson28, Ismael Perez-Fournon12, Ismael Perez-Fournon11, Michael Pohlen19, Jonathan Rawlings26, Gwenifer Raymond19, Dimitra Rigopoulou29, Dimitra Rigopoulou28, L. Riguccini7, D. Rizzo8, Giulia Rodighiero20, Isaac Roseboom6, Isaac Roseboom1, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz2, Douglas Scott23, Nick Seymour26, Nick Seymour30, D. L. Shupe2, A. J. Smith1, Jamie Stevens31, M. Symeonidis26, Markos Trichas32, K. E. Tugwell26, Mattia Vaccari20, Ivan Valtchanov4, Joaquin Vieira2, Marco P. Viero2, L. Vigroux21, Lifan Wang1, Robyn L. Ward1, Julie Wardlow16, G. Wright14, C. K. Xu2, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ~380 deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

707 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Abstract: We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities. These predictions are based on a newly available library of observed stellar spectra. We also compute the spectral evolution across a larger wavelength range, from 91 A to 160 micron, at lower resolution. The model incorporates recent progress in stellar evolution theory and an observationally motivated prescription for thermally-pulsing stars on the asymptotic giant branch. The latter is supported by observations of surface brightness fluctuations in nearby stellar populations. We show that this model reproduces well the observed optical and near-infrared colour-magnitude diagrams of Galactic star clusters of various ages and metallicities. Stochastic fluctuations in the numbers of stars in different evolutionary phases can account for the full range of observed integrated colours of star clusters in the Magellanic Clouds. The model reproduces in detail typical galaxy spectra from the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We exemplify how this type of spectral fit can constrain physical parameters such as the star formation history, metallicity and dust content of galaxies. Our model is the first to enable accurate studies of absorption-line strengths in galaxies containing stars over the full range of ages. Using the highest-quality spectra of the SDSS EDR, we show that this model can reproduce simultaneously the observed strengths of those Lick indices that do not depend strongly on element abundance ratios [abridged].

10,384 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations