scispace - formally typeset
Search or ask a question
Author

Benjamin M. Bolker

Other affiliations: Princeton University, University of Cambridge, McMaster-Carr  ...read more
Bio: Benjamin M. Bolker is an academic researcher from McMaster University. The author has contributed to research in topics: Population & Generalized linear mixed model. The author has an hindex of 57, co-authored 150 publications receiving 60042 citations. Previous affiliations of Benjamin M. Bolker include Princeton University & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: All lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles, and mixed stock analyses indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery.
Abstract: Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (ΦST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats.

164 citations

Book ChapterDOI
29 Jan 2015

159 citations

Journal ArticleDOI
TL;DR: It is demonstrated that fruit traits evolve in concert and as predicted by differences in the behavior, physiology, and morphology of their frugivorous seed dispersers, and the correlated evolution of traits results in the convergence of general appearance of fruits in species that share disperser types.
Abstract: Seed dispersal by vertebrates is one of the most common and important plant–animal mutualisms, involving an enormous diversity of fruiting plants and frugivorous animals. Even though plant reproduction depends largely on seed dispersal, evolutionary ecologists have been unable to link co-occurring traits in fruits with differences in behavior, physiology, and morphology of fruit-eating vertebrates. Hence, the origin and maintenance of fruit diversity remains largely unexplained. Using a multivariate phylogenetic comparative test with unbiased estimates of odor and color in figs, we demonstrate that fruit traits evolve in concert and as predicted by differences in the behavior, physiology (perceptive ability) and morphology of their frugivorous seed dispersers. The correlated evolution of traits results in the convergence of general appearance of fruits in species that share disperser types. Observations at fruiting trees independently confirmed that differences in fig traits predict differences in dispersers. Taken together, these results demonstrate that differences among frugivores have shaped the evolution of fruit traits. More broadly, our results underscore the importance of mutualisms in both generating and maintaining biodiversity.

158 citations

Journal ArticleDOI
TL;DR: 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis.
Abstract: Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis.

158 citations

Journal ArticleDOI
TL;DR: Stage-specific goals and management actions that minimize disease impacts on wildlife, and the research required to implement them are described, including limiting pathogen spread and preventing establishment.
Abstract: Emerging infectious diseases pose an important threat to wildlife. While established protocols exist for combating outbreaks of human and agricultural pathogens, appropriate management actions before, during, and after the invasion of wildlife pathogens have not been developed. We describe stage-specific goals and management actions that minimize disease impacts on wildlife, and the research required to implement them. Before pathogen arrival, reducing the probability of introduction through quarantine and trade restrictions is key because prevention is more cost effective than subsequent responses. On the invasion front, the main goals are limiting pathogen spread and preventing establishment. In locations experiencing an epidemic, management should focus on reducing transmission and disease, and promoting the development of resistance or tolerance. Finally, if pathogen and host populations reach a stable stage, then recovery of host populations in the face of new threats is paramount. Successful management of wildlife disease requires risk-taking, rapid implementation, and an adaptive approach.

150 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a model is described in an lmer call by a formula, in this case including both fixed-and random-effects terms, and the formula and data together determine a numerical representation of the model from which the profiled deviance or the profeatured REML criterion can be evaluated as a function of some of model parameters.
Abstract: Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.

50,607 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: The lmerTest package extends the 'lmerMod' class of the lme4 package, by overloading the anova and summary functions by providing p values for tests for fixed effects, and implementing the Satterthwaite's method for approximating degrees of freedom for the t and F tests.
Abstract: One of the frequent questions by users of the mixed model function lmer of the lme4 package has been: How can I get p values for the F and t tests for objects returned by lmer? The lmerTest package extends the 'lmerMod' class of the lme4 package, by overloading the anova and summary functions by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using the Kenward-Roger approximation for denominator degrees of freedom (based on the KRmodcomp function from the pbkrtest package). Some other convenient mixed model analysis tools such as a step method, that performs backward elimination of nonsignificant effects - both random and fixed, calculation of population means and multiple comparison tests together with plot facilities are provided by the package as well.

12,305 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations