scispace - formally typeset
Search or ask a question
Author

Benliang Zhu

Bio: Benliang Zhu is an academic researcher from South China University of Technology. The author has contributed to research in topics: Topology optimization & Compliant mechanism. The author has an hindex of 18, co-authored 76 publications receiving 987 citations. Previous affiliations of Benliang Zhu include Kyoto University & University of Oldenburg.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
14 Oct 2021
TL;DR: A method for multi-material topology optimization of large-displacement compliant mechanisms considering material-dependent boundary condition is presented in this study and the optimal topologies of the compliant mechanisms obtained by the proposed method can satisfy the specified material- dependent boundary condition.
Abstract: Multi-material compliant mechanisms design enables potential design possibilities by exploiting the advantages of different materials. To satisfy mechanical/thermal impedance matching requirements,...

1 citations

Journal ArticleDOI
TL;DR: In this article , an energy-dissipating characteristic of a cell of a mechanical metamaterial is developed based on a beam with a variable cross-section, where the optimal configuration of the number of nodes and the design variables confined to the design domain, namely, the length, thickness and width of the beam, are designed and discussed to obtain the cell with high specific energy absorption.

1 citations


Cited by
More filters
Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the recent advances in buckling-induced smart applications and explain why buckling responses have certain advantages and are especially suitable for these particular applications, and identify potential research avenues and emerging trends for using buckling and other elastic instabilities for future innovations.
Abstract: A paradigm shift has emerged over the last decade pointing to an exciting research area dealing with the harnessing of elastic structural instabilities for ‘smart’ purposes in a variety of venues. Among the different types of unstable responses, buckling is a phenomenon that has been known for centuries, and yet it is generally avoided through special design modifications. Increasing interest in the design of smart devices and mechanical systems has identified buckling and postbuckling response as a favorable behavior. The objective of this topical review is to showcase the recent advances in buckling-induced smart applications and to explain why buckling responses have certain advantages and are especially suitable for these particular applications. Interesting prototypes in terms of structural forms and material uses associated with these applications are summarized. Finally, this review identifies potential research avenues and emerging trends for using buckling and other elastic instabilities for future innovations.

273 citations

Journal ArticleDOI
TL;DR: It is shown that in the research of topology optimization for additive manufacturing, the integration of material, structure, process and performance is important to pursue high-performance, multi-functional and lightweight production.

224 citations