scispace - formally typeset
Search or ask a question
Author

Bennett Wilburn

Bio: Bennett Wilburn is an academic researcher from Microsoft. The author has contributed to research in topics: Pixel & Image processing. The author has an hindex of 29, co-authored 35 publications receiving 4283 citations. Previous affiliations of Bennett Wilburn include Stanford University & Sony Broadcast & Professional Research Laboratories.

Papers
More filters
Journal ArticleDOI
01 Jul 2005
TL;DR: A unique array of 100 custom video cameras that are built are described, and their experiences using this array in a range of imaging applications are summarized.
Abstract: The advent of inexpensive digital image sensors and the ability to create photographs that combine information from a number of sensed images are changing the way we think about photography. In this paper, we describe a unique array of 100 custom video cameras that we have built, and we summarize our experiences using this array in a range of imaging applications. Our goal was to explore the capabilities of a system that would be inexpensive to produce in the future. With this in mind, we used simple cameras, lenses, and mountings, and we assumed that processing large numbers of images would eventually be easy and cheap. The applications we have explored include approximating a conventional single center of projection video camera with high performance along one or more axes, such as resolution, dynamic range, frame rate, and/or large aperture, and using multiple cameras to approximate a video camera with a large synthetic aperture. This permits us to capture a video light field, to which we can apply spatiotemporal view interpolation algorithms in order to digitally simulate time dilation and camera motion. It also permits us to create video sequences using custom non-uniform synthetic apertures.

1,285 citations

Proceedings ArticleDOI
19 Jul 2004
TL;DR: A simple procedure to calibrate camera arrays used to capture light fields using a plane + parallax framework is described and it is shown how to estimate camera positions up to an affine ambiguity, and how to reproject light field images onto a family of planes using only knowledge of planarParallax for one point in the scene.
Abstract: A light field consists of images of a scene taken from different viewpoints. Light fields are used in computer graphics for image-based rendering and synthetic aperture photography, and in vision for recovering shape. In this paper, we describe a simple procedure to calibrate camera arrays used to capture light fields using a plane + parallax framework. Specifically, for the case when the cameras lie on a plane, we show (i) how to estimate camera positions up to an affine ambiguity, and (ii) how to reproject light field images onto a family of planes using only knowledge of planar parallax for one point in the scene. While planar parallax does not completely describe the geometry of the light field, it is adequate for the first two applications which, it turns out, do not depend on having a metric calibration of the light field. Experiments on acquired light fields indicate that our method yields better results than full metric calibration.

379 citations

ReportDOI
01 Aug 2000
TL;DR: The Light Field Video Camera as mentioned in this paper is a modular embedded design based on the 1EEE1394 High Speed Serial Bus, with an image sensor and MPEG2 compression at each node.
Abstract: : We present the Light Field Video Camera, an array of CMOS image sensors for video image based rendering applications. The device is designed to record a synchronized video dataset from over one hundred cameras to a hard disk array using as few as one PC per fifty image sensors. It is intended to be flexible, modular and scalable, with much visibility and control over the cameras. The Light Field Video Camera is a modular embedded design based on the 1EEE1394 High Speed Serial Bus, with an image sensor and MPEG2 compression at each node. We show both the flexibility and scalability of the design with a six camera prototype.

313 citations

Proceedings ArticleDOI
Bennett Wilburn1, Neel Joshi1, Vaibhav Vaish1, Marc Levoy1, Mark Horowitz1 
27 Jun 2004
TL;DR: A system for capturing multi-thousand frame-per-second video using a dense array of cheap 30 fps CMOS image sensors and how to compensate for spatial and temporal distortions caused by the electronic rolling shutter, a common feature of low-end CMOS sensors is demonstrated.
Abstract: We demonstrate a system for capturing multi-thousand frame-per-second (fps) video using a dense array of cheap 30 fps CMOS image sensors. A benefit of using a camera array to capture high-speed video is that we can scale to higher speeds by simply adding more cameras. Even at extremely high frame rates, our array architecture supports continuous streaming to disk from all of the cameras. This allows us to record unpredictable events, in which nothing occurs before the event of interest that could be used to trigger the beginning of recording. Synthesizing one high-speed video sequence using images from an array of cameras requires methods to calibrate and correct those cameras' varying radiometric and geometric properties. We assume that our scene is either relatively planar or is very far away from the camera and that the images can therefore be aligned using projective transforms. We analyze the errors from this assumption and present methods to make them less visually objectionable. We also present a new method to automatically color match our sensors. Finally, we demonstrate how to compensate for spatial and temporal distortions caused by the electronic rolling shutter, a common feature of low-end CMOS sensors.

245 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: This paper characterize the warps required for tilted focal planes and arbitrary camera configurations using a new rank- 1 constraint that lets us focus on any plane, without having to perform a metric calibration of the cameras, and shows that there are camera configurations and families of tilted focal aircraft that can be factorized into an initial homography followed by shifts.
Abstract: Synthetic aperture focusing consists of warping and adding together the images in a 4D light field so that objects lying on a specified surface are aligned and thus in focus, while objects lying of this surface are misaligned and hence blurred. This provides the ability to see through partial occluders such as foliage and crowds, making it a potentially powerful tool for surveillance. If the cameras lie on a plane, it has been previously shown that after an initial homography, one can move the focus through a family of planes that are parallel to the camera plane by merely shifting and adding the images. In this paper, we analyze the warps required for tilted focal planes and arbitrary camera configurations. We characterize the warps using a new rank- 1 constraint that lets us focus on any plane, without having to perform a metric calibration of the cameras. We also show that there are camera configurations and families of tilted focal planes for which the warps can be factorized into an initial homography followed by shifts. This shear-warp factorization permits these tilted focal planes to be synthesized as efficiently as frontoparallel planes. Being able to vary the focus by simply shifting and adding images is relatively simple to implement in hardware and facilitates a real-time implementation. We demonstrate this using an array of 30 videoresolution cameras; initial homographies and shifts are performed on per-camera FPGAs, and additions and a final warp are performed on 3 PCs.

228 citations


Cited by
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

01 Jan 2005
TL;DR: The plenoptic camera as mentioned in this paper uses a microlens array between the sensor and the main lens to measure the total amount of light deposited at that location, but how much light arrives along each ray.
Abstract: This paper presents a camera that samples the 4D light field on its sensor in a single photographic exposure. This is achieved by inserting a microlens array between the sensor and main lens, creating a plenoptic camera. Each microlens measures not just the total amount of light deposited at that location, but how much light arrives along each ray. By re-sorting the measured rays of light to where they would have terminated in slightly different, synthetic cameras, we can compute sharp photographs focused at different depths. We show that a linear increase in the resolution of images under each microlens results in a linear increase in the sharpness of the refocused photographs. This property allows us to extend the depth of field of the camera without reducing the aperture, enabling shorter exposures and lower image noise. Especially in the macrophotography regime, we demonstrate that we can also compute synthetic photographs from a range of different viewpoints. These capabilities argue for a different strategy in designing photographic imaging systems. To the photographer, the plenoptic camera operates exactly like an ordinary hand-held camera. We have used our prototype to take hundreds of light field photographs, and we present examples of portraits, high-speed action and macro close-ups.

2,252 citations

Proceedings Article
01 Jan 1989
TL;DR: A scheme is developed for classifying the types of motion perceived by a humanlike robot and equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented.
Abstract: A scheme is developed for classifying the types of motion perceived by a humanlike robot. It is assumed that the robot receives visual images of the scene using a perspective system model. Equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented. >

2,000 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: This paper shows how high-quality video-based rendering of dynamic scenes can be accomplished using multiple synchronized video streams combined with novel image-based modeling and rendering algorithms, and develops a novel temporal two-layer compressed representation that handles matting.
Abstract: The ability to interactively control viewpoint while watching a video is an exciting application of image-based rendering. The goal of our work is to render dynamic scenes with interactive viewpoint control using a relatively small number of video cameras. In this paper, we show how high-quality video-based rendering of dynamic scenes can be accomplished using multiple synchronized video streams combined with novel image-based modeling and rendering algorithms. Once these video streams have been processed, we can synthesize any intermediate view between cameras at any time, with the potential for space-time manipulation.In our approach, we first use a novel color segmentation-based stereo algorithm to generate high-quality photoconsistent correspondences across all camera views. Mattes for areas near depth discontinuities are then automatically extracted to reduce artifacts during view synthesis. Finally, a novel temporal two-layer compressed representation that handles matting is developed for rendering at interactive rates.

1,677 citations

Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations