scispace - formally typeset
Search or ask a question
Author

Benny Febriansyah

Bio: Benny Febriansyah is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Perovskite (structure) & Halide. The author has an hindex of 10, co-authored 31 publications receiving 305 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the switching behavior in one dimensional perovskite memristors is exploited to design security primitives for key generation and device authentication, and a prototype of a 1'kb propyl pyridinium lead iodide (PrPyr[PbI3]) weak memristor PUF with a differential write-back strategy is presented.
Abstract: Physical Unclonable Functions (PUFs) address the inherent limitations of conventional hardware security solutions in edge-computing devices. Despite impressive demonstrations with silicon circuits and crossbars of oxide memristors, realizing efficient roots of trust for resource-constrained hardware remains a significant challenge. Hybrid organic electronic materials with a rich reservoir of exotic switching physics offer an attractive, inexpensive alternative to design efficient cryptographic hardware, but have not been investigated till date. Here, we report a breakthrough security primitive exploiting the switching physics of one dimensional halide perovskite memristors as excellent sources of entropy for secure key generation and device authentication. Measurements of a prototypical 1 kb propyl pyridinium lead iodide (PrPyr[PbI3]) weak memristor PUF with a differential write-back strategy reveals near ideal uniformity, uniqueness and reliability without additional area and power overheads. Cycle-to-cycle write variability enables reconfigurability, while in-memory computing empowers a strong recurrent PUF construction to thwart machine learning attacks. Despite the impressive demonstrations with silicon and oxide memristors, realizing efficient roots of trust for resource-constrained hardware remains a challenge. Here, the authors exploit switching behavior in one dimensional perovskite memristors to design security primitives for key generation and device authentication.

65 citations

Journal ArticleDOI
TL;DR: Despite the rapid development of perovskite light-emitting diodes (PeLEDs) in recent years, blue PeLEDs’ efficiencies are still inferior to those of their red and green counterparts as mentioned in this paper.
Abstract: Despite the rapid development of perovskite light-emitting diodes (PeLEDs) in recent years, blue PeLEDs’ efficiencies are still inferior to those of their red and green counterparts. The poor perfo...

55 citations

Journal ArticleDOI
TL;DR: In this article, a pyridinium core and an imidazolium core were used to construct n = 1 (where n refers to the number of contiguous two-dimensional (2D) inorganic la...
Abstract: We utilized two organic dications containing, respectively, a pyridinium and an imidazolium core to construct new n = 1 (where n refers to the number of contiguous two-dimensional (2D) inorganic la...

52 citations

Journal ArticleDOI
TL;DR: In this article, the perovskite surface was passivated with a hydrophobic fluorinated organic salt, namely, pentafluoropropylamonium iodide (PFPAI), which not only narrowed the band gap but also contributed toward the modulation of surface and electronic properties of the resulting film.
Abstract: Despite the high-quality films achieved with triple-cation perovskites, the deviation from an optimized band gap by virtue of Shockley–Queisser estimation signifies consequential light absorption losses in this system. Herein, it is shown that, by passivating the perovskite surface with a hydrophobic fluorinated organic salt, namely, pentafluoropropylamonium iodide (PFPAI), not only is the band gap narrowed but the process also contributes toward the modulation of surface and electronic properties of the resulting film. The cumulative effect of these factors promotes the enhancement in the power conversion efficiency (PCE) and moisture stability of the perovskite solar cells (PSCs) fabricated with the PFPAI-passivated films. Suppression of surface defects and mitigation of interfacial charge recombination in the treated film are in good agreement with the longer photoluminescence (PL) decay lifetime observed. The PFPAI-passivated PSC afforded a PCE of 16.6% with good ambient stability, evidenced by minima...

45 citations

Journal ArticleDOI
TL;DR: In this paper, Halide perovskites are of great interest for light-emitting diodes (PeLEDs) in recent years due to their excellent photo-and electroluminescence properties.
Abstract: Halide perovskites are of great interest for light-emitting diodes (PeLEDs) in recent years due to their excellent photo- and electroluminescence properties. However, trap/defects and ion migration...

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The development of perovskite emitters, their use in light-emitting devices, and the challenges in enhancing the efficiency and stability, as well as reducing the potential toxicity of this technology are discussed in this Review.
Abstract: Metal halide perovskites have shown promising optoelectronic properties suitable for light-emitting applications. The development of perovskite light-emitting diodes (PeLEDs) has progressed rapidly over the past several years, reaching high external quantum efficiencies of over 20%. In this Review, we focus on the key requirements for high-performance PeLEDs, highlight recent advances on materials and devices, and emphasize the importance of reliable characterization of PeLEDs. We discuss possible approaches to improve the performance of blue and red PeLEDs, increase the long-term operational stability and reduce toxicity hazards. We also provide an overview of the application space made possible by recent developments in high-efficiency PeLEDs. The development of perovskite emitters, their use in light-emitting devices, and the challenges in enhancing the efficiency and stability, as well as reducing the potential toxicity of this technology are discussed in this Review.

602 citations

Journal ArticleDOI
TL;DR: This new approach provides water- and heat-resistant operationally stable PSCs with a record-level PCE, and enhances interfacial hole extraction, suppressing nonradiative carrier recombination and enabling a power conversion efficiency (PCE) >22%, the highest reported for 3D/2D architectures.
Abstract: Preventing the degradation of metal perovskite solar cells (PSCs) by humid air poses a substantial challenge for their future deployment. We introduce here a two-dimensional (2D) A2PbI4 perovskite layer using pentafluorophenylethylammonium (FEA) as a fluoroarene cation inserted between the 3D light-harvesting perovskite film and the hole-transporting material (HTM). The perfluorinated benzene moiety confers an ultrahydrophobic character to the spacer layer, protecting the perovskite light-harvesting material from ambient moisture while mitigating ionic diffusion in the device. Unsealed 3D/2D PSCs retain 90% of their efficiency during photovoltaic operation for 1000 hours in humid air under simulated sunlight. Remarkably, the 2D layer also enhances interfacial hole extraction, suppressing nonradiative carrier recombination and enabling a power conversion efficiency (PCE) >22%, the highest reported for 3D/2D architectures. Our new approach provides water- and heat-resistant operationally stable PSCs with a record-level PCE.

482 citations

Journal ArticleDOI
TL;DR: In this article, the basic structure and optoelectronic properties of 2D perovskites, including band structure, optical properties, and charge transport, are discussed, including progress on various synthesis strategies and their impact on structural and optical properties.
Abstract: Two-dimensional (2D) perovskites have attracted considerable interest for their promising applications for solar cells and other optoelectronics, such as light-emitting diodes, spintronics, and photodetectors. Here, we review the recent achievements of 2D perovskites for various optoelectronic applications. First, we discuss the basic structure and optoelectronic properties of 2D perovskites, including band structure, optical properties, and charge transport. We then highlight recent achievements using 2D perovskites in solar cells and beyond solar cells, including progress on various synthesis strategies and their impact on structural and optoelectronic properties. Finally, we discuss current challenges and future opportunities to further develop 2D perovskites for various applications.

346 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices and provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D halide perovskites.
Abstract: Two-dimensional (2D) halide perovskites have emerged as outstanding semiconducting materials thanks to their superior stability and structural diversity. However, the ever-growing field of optoelectronic device research using 2D perovskites requires systematic understanding of the effects of the spacer on the structure, properties, and device performance. So far, many studies are based on trial-and-error tests of random spacers with limited ability to predict the resulting structure of these synthetic experiments, hindering the discovery of novel 2D materials to be incorporated into high-performance devices. In this review, we provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices. We first provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D perovskites. Second, we provide our insights on what kind of spacer cations can stabilize 2D perovskites followed by an extensive review of the spacer cations, which have been shown to stabilize 2D perovskites with an emphasis on the effects of the spacer on the structure and optical properties. Next, we provide a similar explanation for the methods used to fabricate films and their desired properties. Like the synthesis section, we will then focus on various spacers that have been used in devices and how they influence the film structure and device performance. With a comprehensive understanding of these effects, a rational selection of novel spacers can be made, accelerating this already exciting field.

343 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of all-inorganic/organicinorganic hybrid metal halides is presented, focusing on the self-trapped excitons (STEs) model and PL regulation engineering.
Abstract: Zero-dimensional (0D) all-inorganic/organic-inorganic metal halides, as emerging luminescent materials, have attracted unparalleled interest from versatile perspectives due to their unique crystallographic/electronic structures with isolated building units and fascinating optical characteristics. However, significant challenges still exist for 0D metal halides, including their chemical molecular design, photoluminescence (PL) mechanism, PL modification and applications. In this review, we summarize the 0D metal halides through the classification of all-inorganic and organic-inorganic hybrid metal halides, and further emphasize the unique role of B-site cations with different electronic configurations in the PL process. Furthermore, the PL mechanisms focusing on the self-trapped excitons (STEs) model and PL regulation engineering are examined to explore their extraordinary PL properties and further reveal new application prospects. This review aims to provide in-depth insight into the structure-luminescence-application relationship of 0D metal halides and pave the way for the realization of next-generation high-performance luminescent materials.

254 citations