scispace - formally typeset
Search or ask a question
Author

Benu Brata Das

Bio: Benu Brata Das is an academic researcher from Indian Association for the Cultivation of Science. The author has contributed to research in topics: Topoisomerase & DNA damage. The author has an hindex of 26, co-authored 52 publications receiving 3579 citations. Previous affiliations of Benu Brata Das include Indian Institute of Chemical Biology & Central Food Technological Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: This study shows that PARP inhibitors trap the PARP1 and PARP2 enzymes at damaged DNA, providing a new mechanistic foundation for the rational application ofPARP inhibitors in cancer therapy.
Abstract: Small-molecule inhibitors of PARP are thought to mediate their antitumor effects as catalytic inhibitors that block repair of DNA single-strand breaks (SSB). However, the mechanism of action of PARP inhibitors with regard to their effects in cancer cells is not fully understood. In this study, we show that PARP inhibitors trap the PARP1 and PARP2 enzymes at damaged DNA. Trapped PARP-DNA complexes were more cytotoxic than unrepaired SSBs caused by PARP inactivation, arguing that PARP inhibitors act in part as poisons that trap PARP enzyme on DNA. Moreover, the potency in trapping PARP differed markedly among inhibitors with niraparib (MK-4827) > olaparib (AZD-2281) >> veliparib (ABT-888), a pattern not correlated with the catalytic inhibitory properties for each drug. We also analyzed repair pathways for PARP-DNA complexes using 30 genetically altered avian DT40 cell lines with preestablished deletions in specific DNA repair genes. This analysis revealed that, in addition to homologous recombination, postreplication repair, the Fanconi anemia pathway, polymerase β, and FEN1 are critical for repairing trapped PARP-DNA complexes. In summary, our study provides a new mechanistic foundation for the rational application of PARP inhibitors in cancer therapy.

1,587 citations

Journal ArticleDOI
TL;DR: The rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents, are discussed.

242 citations

Journal ArticleDOI
TL;DR: Camptothecin (CPT), an inhibitor of DNA topoisomerase I, induces programmed cell death (PCD) both in the amastigote and promastigotes form of L. donovani parasites as mentioned in this paper.
Abstract: The parasites of the order kinetoplastidae including Leishmania spp. emerge from most ancient phylogenic branches of unicellular eukaryotic lineages. In their life cycle, topoisomerase I plays a significant role in carrying out vital cellular processes. Camptothecin (CPT), an inhibitor of DNA topoisomerase I, induces programmed cell death (PCD) both in the amastigotes and promastigotes form of L. donovani parasites. CPT-induced cellular dysfunction in L. donovani promastigotes is characterized by several cytoplasmic and nuclear features of apoptosis. CPT inhibits cellular respiration that results in mitochondrial hyperpolarization taking place by oligomycin-sensitive F0-F1 ATPase-like protein in leishmanial cells. During the early phase of activation, there is an increase in reactive oxygen species (ROS) inside cells, which causes subsequent elevation in the level of lipid peroxidation and decrease in reducing equivalents like GSH. Endogenous ROS formation and lipid peroxidation cause eventual loss of mitochondrial membrane potential. Furthermore, cytochrome c is released into the cytosol in a manner independent of involvement of CED3/CPP32 group of proteases and unlike mammalian cells it is insensitive to cyclosporin A. These events are followed by activation of both CED3/CPP32 and ICE group of proteases in PCD of Leishmania. Taken together, our study indicates that different biochemical events leading to apoptosis in leishmanial cells provide information that could be exploited to develop newer potential therapeutic targets.

226 citations

Journal ArticleDOI
TL;DR: It is proposed that Top1cc produce transcription arrests with R‐loop formation and generate DSBs that activate ATM in post‐mitotic cells.
Abstract: Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)—which are potent transcription-blocking lesions—also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, γ-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB–ATM–DDR pathway was suppressed by inhibiting transcription and γ-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.

219 citations

Journal ArticleDOI
TL;DR: PARP1 is identified as a key component driving the repair of trapped Top1cc by TDP1, and is shown to play a critical role in this process.
Abstract: Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3′-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1–PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Treatment with the PARP inhibitor olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA-repair genes led to a high response rate.
Abstract: BackgroundProstate cancer is a heterogeneous disease, but current treatments are not based on molecular stratification. We hypothesized that metastatic, castration-resistant prostate cancers with DNA-repair defects would respond to poly(adenosine diphosphate [ADP]–ribose) polymerase (PARP) inhibition with olaparib. MethodsWe conducted a phase 2 trial in which patients with metastatic, castration-resistant prostate cancer were treated with olaparib tablets at a dose of 400 mg twice a day. The primary end point was the response rate, defined either as an objective response according to Response Evaluation Criteria in Solid Tumors, version 1.1, or as a reduction of at least 50% in the prostate-specific antigen level or a confirmed reduction in the circulating tumor-cell count from 5 or more cells per 7.5 ml of blood to less than 5 cells per 7.5 ml. Targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase-chain-reaction testing were performed on samples from mandated tumor...

1,694 citations

Journal ArticleDOI
17 Mar 2017-Science
TL;DR: Current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness are discussed, and interesting lessons for the development of other therapies are provided.
Abstract: PARP inhibitors (PARPi), a cancer therapy targeting poly(ADP-ribose) polymerase, are the first clinically approved drugs designed to exploit synthetic lethality, a genetic concept proposed nearly a century ago. Tumors arising in patients who carry germline mutations in either BRCA1 or BRCA2 are sensitive to PARPi because they have a specific type of DNA repair defect. PARPi also show promising activity in more common cancers that share this repair defect. However, as with other targeted therapies, resistance to PARPi arises in advanced disease. In addition, determining the optimal use of PARPi within drug combination approaches has been challenging. Nevertheless, the preclinical discovery of PARPi synthetic lethality and the route to clinical approval provide interesting lessons for the development of other therapies. Here, we discuss current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness.

1,643 citations

Journal ArticleDOI
TL;DR: Responses to olaparib were observed across different tumor types associated with germline BRCA1/2 mutations, and warrants further investigation in confirmatory studies.
Abstract: Purpose Olaparib is an oral poly (ADP-ribose) polymerase inhibitor with activity in germline BRCA1 and BRCA2 (BRCA1/2) –associated breast and ovarian cancers. We evaluated the efficacy and safety of olaparib in a spectrum of BRCA1/2-associated cancers. Patients and Methods This multicenter phase II study enrolled individuals with a germline BRCA1/2 mutation and recurrent cancer. Eligibility included ovarian cancer resistant to prior platinum; breast cancer with ≥ three chemotherapy regimens for metastatic disease; pancreatic cancer with prior gemcitabine treatment; or prostate cancer with progression on hormonal and one systemic therapy. Olaparib was administered at 400 mg twice per day. The primary efficacy end point was tumor response rate. Results A total of 298 patients received treatment and were evaluable. The tumor response rate was 26.2% (78 of 298; 95% CI, 21.3 to 31.6) overall and 31.1% (60 of 193; 95% CI, 24.6 to 38.1), 12.9% (eight of 62; 95% CI, 5.7 to 23.9), 21.7% (five of 23; 95% CI, 7.5 to...

1,423 citations

Journal ArticleDOI
TL;DR: Among patients with advanced breast cancer and a germline BRCA1/2 mutation, single‐agent talazoparib provided a significant benefit over standard chemotherapy with respect to progression‐free survival.
Abstract: Background The poly(adenosine diphosphate–ribose) inhibitor talazoparib has shown antitumor activity in patients with advanced breast cancer and germline mutations in BRCA1 and BRCA2 (BRCA1/2). Methods We conducted a randomized, open-label, phase 3 trial in which patients with advanced breast cancer and a germline BRCA1/2 mutation were assigned, in a 2:1 ratio, to receive talazoparib (1 mg once daily) or standard single-agent therapy of the physician’s choice (capecitabine, eribulin, gemcitabine, or vinorelbine in continuous 21-day cycles). The primary end point was progression-free survival, which was assessed by blinded independent central review. Results Of the 431 patients who underwent randomization, 287 were assigned to receive talazoparib and 144 were assigned to receive standard therapy. Median progression-free survival was significantly longer in the talazoparib group than in the standard-therapy group (8.6 months vs. 5.6 months; hazard ratio for disease progression or death, 0.54; 95% c...

1,298 citations

Journal ArticleDOI
TL;DR: Evidence suggests that ATM-mediated phosphorylation has a role in the response to other types of genotoxic stress and it has become apparent that ATM is active in other cell signalling pathways involved in maintaining cellular homeostasis.
Abstract: The protein kinase ataxia-telangiectasia mutated (ATM) is best known for its role as an apical activator of the DNA damage response in the face of DNA double-strand breaks (DSBs). Following induction of DSBs, ATM mobilizes one of the most extensive signalling networks that responds to specific stimuli and modifies directly or indirectly a broad range of targets. Although most ATM research has focused on this function, evidence suggests that ATM-mediated phosphorylation has a role in the response to other types of genotoxic stress. Moreover, it has become apparent that ATM is active in other cell signalling pathways involved in maintaining cellular homeostasis.

1,281 citations