scispace - formally typeset
Search or ask a question
Author

Benxu Yu

Bio: Benxu Yu is an academic researcher from Zhejiang Sci-Tech University. The author has contributed to research in topics: Cavitation & Impeller. The author has an hindex of 2, co-authored 2 publications receiving 52 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Schnerr-Sauer cavitation model was adopted to capture the cavitation phase change process and the influence of cavitation on the turbulence intensity was illustrated using the turbulent kinetic energy transport equation, which showed that the pressure diffusion and turbulent transport terms dominate as cavitation occurs.
Abstract: The physical mechanism of flow unsteadiness is one of the key problems in cavitating flow. Significant efforts have been exerted to explain the cavitation-vortex interaction mechanism. As well, the process of kinetic energy transport during the evolution of unsteady cavitating flow must be elucidated. In this work, 2D calculations of cavitating flow around a NACA66 hydrofoil were performed based on the open source software OpenFOAM. The modified shear stress transport k-ω turbulence model, which considers curvature and turbulent eddy viscosity corrections, was employed to close the governing equations. The Schnerr-Sauer cavitation model was adopted to capture the cavitation phase change process. Numerical results showed reasonable consistency with the results of the experiments conducted by Leroux et al. (2004). The results showed that cavitation promotes turbulence intensity and flow unsteadiness around the hydrofoil. During the attached sheet cavity growth stage, high-value regions of turbulent kinetic energy are located substantially at the interface of the cavity, particularly at the rear portion of the cavity region. During the cloud cavity shed-off stage, the cavity begins to break off and the maximum value of turbulent kinetic energy is observed inside the shed cavity. Finally, the influence of cavitation on the turbulence intensity is illustrated using the turbulent kinetic energy transport equation, which shows that the pressure diffusion and turbulent transport terms dominate as cavitation occurs. In addition, cavitation promotes turbulence production and increases dissipation with fluid viscosity and flow unsteadiness. The viscous transport term only acts in the cavitation shedding stage under large-scale vortex shedding. Overall, these findings are of considerable interest in engineering applications.

45 citations

Journal ArticleDOI
TL;DR: In this article, a closed loop was established to investigate the pump cavitation phenomenon, the statistical parameters for PDF (Probability Density Function), Variance and RMS (Root Mean Square) were used to analyze the relationship between the cavitation performance and the suction pressure signals during the development of cavitation.
Abstract: Centrifugal pumps are often used in operating conditions where they can be susceptible to premature failure. The cavitation phenomenon is a common fault in centrifugal pumps and is associated with undesired effects. Among the numerous cavitation detection methods, the measurement of suction pressure fluctuation is one of the most used methods to detect or diagnose the degree of cavitation in a centrifugal pump. In this paper, a closed loop was established to investigate the pump cavitation phenomenon, the statistical parameters for PDF (Probability Density Function), Variance and RMS (Root Mean Square) were used to analyze the relationship between the cavitation performance and the suction pressure signals during the development of cavitation. It is found that the statistical parameters used in this research are able to capture critical cavitation condition and cavitation breakdown condition, whereas difficult for the detection of incipient cavitation in the pump. At part-load conditions, the pressure fluctuations at the impeller inlet show more complexity than the best efficiency point (BEP). Amplitude of PDF values of suction pressure increased steeply when the flow rate dropped to 40 m3/h (the design flow rate was 60 m3/h). One possible reason is that the flow structure in the impeller channel promotes an increase of the cavitation intensity when the flow rate is reduced to a certain degree. This shows that it is necessary to find the relationship between the cavitation instabilities and flow instabilities when centrifugal pumps operate under part-load flow rates.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil, using Lagrangian coherent structures (LCSs) combined with Schnerr-Sauer cavitation model.

205 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the progress in the researches of the tip-leakage vortex (TLV) cavitation, including the numerical methods for the TLV cavitation and the flow characteristics.
Abstract: The tip-leakage vortex (TLV) cavitation is a challenging issue for a variety of axial hydraulic turbines and pumps from both technical and scientific viewpoints. The flow characteristics of the TLV cavitation were widely studied in the past decades, but the knowledge about the tip-leakage cavitating flow is still limited. The present paper reviews the progresses in the researches of the TLV cavitation, including the numerical methods for the TLV cavitation, the flow characteristics of the TLV, the influences of the TLV cavitation on the local flow field and the control strategies of the TLV cavitation. It is indicated that the non-condensable gas may play an important role in the development of the TLV cavitation, and this fact should be considered during a careful simulation of the TLV cavitation. It is also suggested that the development of the TLV cavitation will significantly influence the distributions of the vorticity and the turbulence kinetic energy. Due to the complexity of the TLV cavitation, it is still an open question how to suppress the TLV cavitation in a simple but effective way. Finally, based on these understandings, some advanced topics for the future work are suggested to further promote the study of the TLV cavitation, for a deeper knowledge about the TLV cavitation.

53 citations

Journal ArticleDOI
Zhe Lin1, Sun Xiwang1, Yu Tianci1, Yifan Zhang1, Yi Li1, Zuchao Zhu1 
TL;DR: In this article, the authors used the CFD-DEM simulation method to study the gas-solid two-phase flow characteristics and erosion characteristics of the gate valve, and the accuracy of the simulation was validated by comparing the simulation and experimental data.

50 citations

Journal ArticleDOI
TL;DR: In this article, a numerical simulation method considering compressibility and combining the thermal effects of cryogenic fluids was developed, which consisted of the compressible thermal cavitation model and RNG k-e turbulence model with modified turbulent eddy viscosity.

44 citations

Journal ArticleDOI
Weihua Sun1, Lei Tan1
TL;DR: In this paper, the cavitation-vortex-pressure fluctuation interaction in a centrifugal pump under partial load with experimental validation was investigated, and the authors used the improved unsteady calculation model based on bubble-rotation-based Zwart-Gerber-Belamri (BRZGB) cavitation model.
Abstract: Cavitation is a complicated phenomenon in the centrifugal pump. In this work, the improved unsteady calculation model based on bubble-rotation-based Zwart–Gerber–Belamri (BRZGB) cavitation model is used to investigate the cavitation-vortex-pressure fluctuation interaction in a centrifugal pump under partial load with experimental validation. Spatial–temporal evolution of cavitation can be classified into three stages: developing stage, shedding stage, and collapsing stage. The cavitation evolution period is found as 1/4T (T is impeller rotation period), corresponding to the frequency 4fi (fi is impeller rotation frequency). On the analysis of the relative vorticity transport equation, it is revealed that the cavity is stretched by the relative vortex stretching term (RVS) and developed by the relative vortex dilation term (RVD), and they have great influence on the cavity shedding. The peak value of pressure fluctuation intensity occurs near the vapor–liquid interface at cavity rear, and shifts downstream with the cavitation development. The hysteresis between the vapor volume fraction, vorticity, and pressure fluctuation is observed, and the variation of vapor volume fraction is the source of cavitation-vortex-pressure interaction.

41 citations