scispace - formally typeset
Search or ask a question
Author

Berardi Sensale-Rodriguez

Bio: Berardi Sensale-Rodriguez is an academic researcher from University of Utah. The author has contributed to research in topics: Terahertz radiation & Graphene. The author has an hindex of 28, co-authored 145 publications receiving 3897 citations. Previous affiliations of Berardi Sensale-Rodriguez include University of the Republic & University of Notre Dame.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that exceptionally efficient broadband modulation of terahertz waves at room temperature can be realized using graphene with extremely low intrinsic signal attenuation, which is also the first demonstrated graphene-based device enabled solely by intraband transitions.
Abstract: Terahertz technology promises myriad applications including imaging, spectroscopy and communications. However, one major bottleneck at present for advancing this field is the lack of efficient devices to manipulate the terahertz electromagnetic waves. Here we demonstrate that exceptionally efficient broadband modulation of terahertz waves at room temperature can be realized using graphene with extremely low intrinsic signal attenuation. We experimentally achieved more than 2.5 times superior modulation than prior broadband intensity modulators, which is also the first demonstrated graphene-based device enabled solely by intraband transitions. The unique advantages of graphene in comparison to conventional semiconductors are the ease of integration and the extraordinary transport properties of holes, which are as good as those of electrons owing to the symmetric conical band structure of graphene. Given recent progress in graphene-based terahertz emitters and detectors, graphene may offer some interesting solutions for terahertz technologies.

968 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported 30-nm-gate-length InAlN/Aln/GaN/SiC high-electron-mobility transistors with a record current gain cutoff frequency (fT) of 370 GHz.
Abstract: We report 30-nm-gate-length InAlN/AlN/GaN/SiC high-electron-mobility transistors (HEMTs) with a record current gain cutoff frequency (fT) of 370 GHz. The HEMT without back barrier exhibits an extrinsic transconductance (gm.ext) of 650 mS/mm and an on/off current ratio of 106 owing to the incorporation of dielectric-free passivation and regrown ohmic contacts with a contact resistance of 0.16 Ω·mm. Delay analysis suggests that the high fT is a result of low gate-drain parasitics associated with the rectangular gate. Although it appears possible to reach 500-GHz fT by further reducing the gate length, it is imperative to investigate alternative structures that offer higher mobility/velocity while keeping the best possible electrostatic control in ultrascaled geometry.

315 citations

Journal ArticleDOI
TL;DR: This graphene-based electro-absorption modulator performance, among the best reported to date, indicates the enormous potential of graphene for terahertz reconfigurable optoelectronic devices.
Abstract: We demonstrate a graphene-based electro-absorption modulator achieving extraordinary control of terahertz reflectance. By concentrating the electric field intensity in an active layer of graphene, an extraordinary modulation depth of 64% is achieved while simultaneously exhibiting low insertion loss (∼2 dB), which is remarkable since the active region of the device is atomically thin. This modulator performance, among the best reported to date, indicates the enormous potential of graphene for terahertz reconfigurable optoelectronic devices.

250 citations

Journal ArticleDOI
TL;DR: In this paper, the hole conductivity in Graphene has been electrostatically tuned in the graphene-2DEG parallel capacitor configuration to achieve a modulation depth of > 90% while simultaneously minimizing signal attenuation to < 5%.
Abstract: The modulation depth of 2-D electron gas (2DEG) based THz modulators using AlGaAs/GaAs heterostructures with metal gates is inherently limited to 90%) but also severely degrades the modulation depth. The metal losses can be significantly reduced with an alternative material with tunable conductivity. Graphene presents a unique solution to this problem due to its symmetric band structure and extraordinarily high mobility of holes that is comparable to electron mobility in conventional semiconductors. The hole conductivity in graphene can be electrostatically tuned in the graphene-2DEG parallel capacitor configuration, thus more efficiently tuning the THz transmission. In this work, we show that it is possible to achieve a modulation depth of > 90% while simultaneously minimizing signal attenuation to < 5% by tuning the Fermi level at the Dirac point in graphene.

212 citations

Journal ArticleDOI
20 Jun 2019
TL;DR: In this article, multilevel diffractive lenses (MDLs) were designed and fabricated with larger constituent features, making them accessible to low-cost, large-area volume manufacturing, which is difficult for metalenses.
Abstract: Recently, there has been an explosion of interest in metalenses for imaging. The interest is primarily based on their subwavelength thicknesses. Diffractive gratings have been used as thin optical elements since the late 19th century. Here, we show that multilevel diffractive lenses (MDLs), when designed properly, can exceed the performance of metalenses. Furthermore, MDLs can be designed and fabricated with larger constituent features, making them accessible to low-cost, large-area volume manufacturing, which is generally challenging for metalenses. The support substrate will dominate overall thickness for all flat optics. Therefore, the advantage of a slight decrease in thickness (from ∼2λ to ∼λ/2) afforded by metalenses may not be useful. We further elaborate on the differences between these approaches and clarify that metalenses have unique advantages when manipulating the electromagnetic fields, rather than intensity.

209 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response (e.g. scattering amplitude, phase, and polarization), mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,528 citations

Journal ArticleDOI
TL;DR: An in-depth view of Terahertz Band (0.1-10 THz) communication, which is envisioned as a key technology to satisfy the increasing demand for higher speed wireless communication, is provided.

1,206 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, is reviewed.
Abstract: Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

1,158 citations

Journal ArticleDOI
TL;DR: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature as discussed by the authors.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response, mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,106 citations