scispace - formally typeset
Search or ask a question
Author

Berit Marten

Bio: Berit Marten is an academic researcher from University of Kiel. The author has contributed to research in topics: Synbiotics & Mineral absorption. The author has an hindex of 5, co-authored 6 publications receiving 910 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics and synbiotics.
Abstract: Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics and synbiotics. The results are more prominent in animal models, where more studies have been performed, than in human studies, where experimental conditions are more difficult to control.

474 citations

Journal ArticleDOI
TL;DR: Under certain in vitro conditions, M CTs exert proinflammatory effects, but in vivo MCTs may reduce intestinal injury and protect from hepatotoxicity, and MCFAs may reduce fasting lipid levels more than oils rich in mono- or polyunsaturated fatty acids.

389 citations

Journal ArticleDOI
TL;DR: The data indicate that the addition of GOS (5 g/L) to a follow-on formula positively influences the bifidobacteria flora and the stool consistency in infants during the supplementation period at weaning.
Abstract: Objectives:The primary objective of this study was to determine the bifidogenic effect of galacto-oligosaccharides (GOS) in a follow-on formula and the effects on other intestinal bacteria. Secondary objectives were the effects on stool characteristics, growth, and general well-being.Partici

105 citations

01 Jan 2007
TL;DR: In this article, the effect of prebiotics on mineral absorption and metabolism and bone composition and architecture was investigated in animals and humans, and the results showed that prebiotic are the most promising but also best investigated substances with respect to a bone health-promoting potential, compared with probiotics and synbiotics.
Abstract: Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics and synbiotics. The results are more prominent in animal models, where more studies have been performed, than in human studies, where experimental conditions are more difficult to control. J. Nutr. 137: 838S‐846S, 2007.

27 citations

Journal ArticleDOI
TL;DR: Assessment of the influence of the PTGES2 Arg298His polymorphism on a wider scale of parameters of the metabolic syndrome and postprandial metabolism found risk-reducing effects of the minor His allele could be mediated partly by lowered BMI.
Abstract: The prostaglandin E synthase 2 (PTGES2) gene maps to a locus linked to obesity and is involved in the synthesis of the antilipolytic compound prostaglandin E(2). In a recent study, we found an association of the minor PTGES2 Arg298His allele and lower risk of type 2 diabetes mellitus in the European Investigation into Cancer and Nutrition (EPIC) and Cooperative Health Research in the Augsburg Region (KORA) cohorts. Here, we employed our Metabolic Intervention Cohort Kiel (MICK) to assess the influence of the PTGES2 Arg298His polymorphism on a wider scale of parameters of the metabolic syndrome and postprandial metabolism. In comparison to subjects homozygous for the Arg allele, carriers of the His-allele showed significantly lower fasting insulin (geometric mean +/- SEM: 11.8 muU/mL, 11.41-12.25 versus 13.0, 12.71-13.33; p = 0.023), lower postprandial insulin levels after an oral glucose tolerance test (area under the curve 77.2, 74.07-80.52 versus 81.2, 78.8-83.63; p = 0.023) and lower homeostasis model assessment (HOMA)-insulin-resistance (3.030, 2.909-3.157 versus 3.346, 3.257-3.438; p = 0.041) and HOMA-beta-cell-function (107.2, 104.04-110.52 versus 117.2, 114.65-119.71; p = 0.019). Adjustment for body mass index (BMI) resulted in a loss of these significant differences. BMI tended to show lower values in His-allele carriers, (p = 0.067). In conclusion, risk-reducing effects of the minor His allele of the PTGES2 Arg298His polymorphism could be mediated partly by lowered BMI.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present document has been written by a group of both academic and industry experts and aims to validate and expand the original idea of the prebiotic concept, defined as the selective stimulation of growth and/or activity of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.
Abstract: The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.

1,786 citations

Journal ArticleDOI
TL;DR: The findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity.
Abstract: Aims/hypothesis Recent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes.

1,607 citations

Journal ArticleDOI
TL;DR: The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.
Abstract: Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non...

1,482 citations

Journal ArticleDOI
TL;DR: Benefits of nutrigenomics to study complex physiological effects of the ‘whole-grain package’, and the most promising ways for improving the nutritional quality of cereal products are discussed.
Abstract: Epidemiological studies have clearly shown that whole-grain cereals can protect against obesity, diabetes, CVD and cancers. The specific effects of food structure (increased satiety, reduced transit time and glycaemic response), fibre (improved faecal bulking and satiety, viscosity and SCFA production, and/or reduced glycaemic response) and Mg (better glycaemic homeostasis through increased insulin secretion), together with the antioxidant and anti-carcinogenic properties of numerous bioactive compounds, especially those in the bran and germ (minerals, trace elements, vitamins, carotenoids, polyphenols and alkylresorcinols), are today well-recognised mechanisms in this protection. Recent findings, the exhaustive listing of bioactive compounds found in whole-grain wheat, their content in whole-grain, bran and germ fractions and their estimated bioavailability, have led to new hypotheses. The involvement of polyphenols in cell signalling and gene regulation, and of sulfur compounds, lignin and phytic acid should be considered in antioxidant protection. Whole-grain wheat is also a rich source of methyl donors and lipotropes (methionine, betaine, choline, inositol and folates) that may be involved in cardiovascular and/or hepatic protection, lipid metabolism and DNA methylation. Potential protective effects of bound phenolic acids within the colon, of the B-complex vitamins on the nervous system and mental health, of oligosaccharides as prebiotics, of compounds associated with skeleton health, and of other compounds such as alpha-linolenic acid, policosanol, melatonin, phytosterols and para-aminobenzoic acid also deserve to be studied in more depth. Finally, benefits of nutrigenomics to study complex physiological effects of the 'whole-grain package', and the most promising ways for improving the nutritional quality of cereal products are discussed.

871 citations

Journal ArticleDOI
TL;DR: The application of probiotics and prebiotics may result in elevated health status, improved disease resistance, growth performance, body composition, reduced malformations and improved gut morphology and microbial balance.

827 citations