scispace - formally typeset
Search or ask a question
Author

Berna Devezer

Other affiliations: Washington State University
Bio: Berna Devezer is an academic researcher from University of Idaho. The author has contributed to research in topics: Population & Credibility. The author has an hindex of 9, co-authored 17 publications receiving 387 citations. Previous affiliations of Berna Devezer include Washington State University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors develop and test a theory explaining how customers respond to failed service recoveries (i.e., double deviations) and demonstrate that, contrary to common wisdom, customers do not always respond negatively to a double deviation, and firms still have a "second chance" following a failed recovery.

202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors build on the concept of a goal hierarchy to propose that small acts may have unintended, large consequences on various domains of consumer well-being, and they show that when people perceive the end goal as unimportant, even a single behavioral failure may reduce commitment to a wellbeing end goal and weaken future intentions to perform behaviors that improve their quality of life.
Abstract: Although there is increased awareness of issues surrounding consumer well-being, consumers often lack the personal commitment to improve their quality of life. This article builds on the concept of a goal hierarchy to propose that small acts may have unintended, large consequences on various domains of consumer well-being. A decrease in commitment to well-being goals (e.g., sustaining the natural environment) may stem from people's failure to achieve everyday subgoals (e.g., failing to recycle a newspaper). Four experiments in three contexts (i.e., consumer overspending, environmentally friendly behaviors, and charitable donations) show that when people perceive the endgoal as unimportant, even a single behavioral failure may reduce commitment to a well-being endgoal and weaken future intentions to perform behaviors that improve their quality of life. In addition, goal importance moderates the adverse relationship between subgoal performance and endgoal commitment. The authors present consumer-specific an...

69 citations

Journal ArticleDOI
10 Jan 2019
TL;DR: The authors consider which aspects of the current reform movement are relevant to psychological modelers, and propose a number of techniques and practices aimed at making psychological modeling more transparent, trusted, and robust.
Abstract: In an attempt to increase the reliability of empirical findings, psychological scientists have recently proposed a number of changes in the practice of experimental psychology. Most current reform efforts have focused on the analysis of data and the reporting of findings for empirical studies. However, a large contingent of psychologists build models that explain psychological processes and test psychological theories using formal psychological models. Some, but not all, recommendations borne out of the broader reform movement bear upon the practice of behavioral or cognitive modeling. In this article, we consider which aspects of the current reform movement are relevant to psychological modelers, and we propose a number of techniques and practices aimed at making psychological modeling more transparent, trusted, and robust.

67 citations

Journal ArticleDOI
15 May 2019-PLOS ONE
TL;DR: It is shown that the scientific process may not converge to truth even if scientific results are reproducible and that irreproducible results do not necessarily imply untrue results.
Abstract: Consistent confirmations obtained independently of each other lend credibility to a scientific result. We refer to results satisfying this consistency as reproducible and assume that reproducibility is a desirable property of scientific discovery. Yet seemingly science also progresses despite irreproducible results, indicating that the relationship between reproducibility and other desirable properties of scientific discovery is not well understood. These properties include early discovery of truth, persistence on truth once it is discovered, and time spent on truth in a long-term scientific inquiry. We build a mathematical model of scientific discovery that presents a viable framework to study its desirable properties including reproducibility. In this framework, we assume that scientists adopt a model-centric approach to discover the true model generating data in a stochastic process of scientific discovery. We analyze the properties of this process using Markov chain theory, Monte Carlo methods, and agent-based modeling. We show that the scientific process may not converge to truth even if scientific results are reproducible and that irreproducible results do not necessarily imply untrue results. The proportion of different research strategies represented in the scientific population, scientists’ choice of methodology, the complexity of truth, and the strength of signal contribute to this counter-intuitive finding. Important insights include that innovative research speeds up the discovery of scientific truth by facilitating the exploration of model space and epistemic diversity optimizes across desirable properties of scientific discovery.

51 citations

Posted ContentDOI
28 Apr 2020-bioRxiv
TL;DR: A formal statistical analysis of three popular claims in the metascientific literature is presented, showing how the use and benefits of such formalism can inform and shape debates about such methodological claims.
Abstract: Current attempts at methodological reform in sciences come in response to an overall lack of rigor in methodological and scientific practices in experimental sciences. However, most methodological reform attempts suffer from similar mistakes and over-generalizations to the ones they aim to address. We argue that this can be attributed in part to lack of formalism and first principles. Considering the costs of allowing false claims to become canonized, we argue for formal statistical rigor and scientific nuance in methodological reform. To attain this rigor and nuance, we propose a five-step formal approach for solving methodological problems. To illustrate the use and benefits of such formalism, we present a formal statistical analysis of three popular claims in the metascientific literature: (a) that reproducibility is the cornerstone of science; (b) that data must not be used twice in any analysis; and (c) that exploratory projects imply poor statistical practice. We show how our formal approach can inform and shape debates about such methodological claims.

51 citations


Cited by
More filters
Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Journal ArticleDOI
TL;DR: A review of the academic literature from marketing and behavioral science that exa... as mentioned in this paper highlights the important role of marketing in encouraging sustainable consumption, and presents a review of marketing and behavioural science literature that support sustainable consumption.
Abstract: Highlighting the important role of marketing in encouraging sustainable consumption, the current research presents a review of the academic literature from marketing and behavioral science that exa...

650 citations

01 Jan 2013
TL;DR: Four rationales for sharing data are examined, drawing examples from the sciences, social sciences, and humanities: to reproduce or to verify research, to make results of publicly funded research available to the public, to enable others to ask new questions of extant data, and to advance the state of research and innovation.
Abstract: We must all accept that science is data and that data are science, and thus provide for, and justify the need for the support of, much-improved data curation. (Hanson, Sugden, & Alberts) Researchers are producing an unprecedented deluge of data by using new methods and instrumentation. Others may wish to mine these data for new discoveries and innovations. However, research data are not readily available as sharing is common in only a few fields such as astronomy and genomics. Data sharing practices in other fields vary widely. Moreover, research data take many forms, are handled in many ways, using many approaches, and often are difficult to interpret once removed from their initial context. Data sharing is thus a conundrum. Four rationales for sharing data are examined, drawing examples from the sciences, social sciences, and humanities: (1) to reproduce or to verify research, (2) to make results of publicly funded research available to the public, (3) to enable others to ask new questions of extant data, and (4) to advance the state of research and innovation. These rationales differ by the arguments for sharing, by beneficiaries, and by the motivations and incentives of the many stakeholders involved. The challenges are to understand which data might be shared, by whom, with whom, under what conditions, why, and to what effects. Answers will inform data policy and practice. © 2012 Wiley Periodicals, Inc.

634 citations

Journal ArticleDOI
26 Nov 2019-eLife
TL;DR: Ten simple rules to ensure that computational modeling is used with care and yields meaningful insights are offered, which apply to the simplest modeling techniques most accessible to beginning modelers and most rules apply to more advanced techniques.
Abstract: Computational modeling of behavior has revolutionized psychology and neuroscience. By fitting models to experimental data we can probe the algorithms underlying behavior, find neural correlates of computational variables and better understand the effects of drugs, illness and interventions. But with great power comes great responsibility. Here, we offer ten simple rules to ensure that computational modeling is used with care and yields meaningful insights. In particular, we present a beginner-friendly, pragmatic and details-oriented introduction on how to relate models to data. What, exactly, can a model tell us about the mind? To answer this, we apply our rules to the simplest modeling techniques most accessible to beginning modelers and illustrate them with examples and code available online. However, most rules apply to more advanced techniques. Our hope is that by following our guidelines, researchers will avoid many pitfalls and unleash the power of computational modeling on their own data.

312 citations

Journal ArticleDOI
TL;DR: The importance of studying the service experience, which encompasses multiple service encounters, has been emphasized by service researchers as mentioned in this paper, but the reflection on a series of service encounters has not yet been explored.

301 citations