scispace - formally typeset
Search or ask a question
Author

Bernard Dennis Cullity

Bio: Bernard Dennis Cullity is an academic researcher. The author has contributed to research in topics: Crystallite & Diffraction. The author has an hindex of 1, co-authored 1 publications receiving 17396 citations.

Papers
More filters
Book
01 Jan 1956
TL;DR: In this article, the authors present a chemical analysis of X-ray diffraction by Xray Spectrometry and phase-diagram Determination of single crystal structures and phase diagrams.
Abstract: 1. Properties of X-rays. 2. Geometry of Crystals. 3. Diffraction I: Directions of Diffracted Beams. 4. Diffraction II: Intensities of Diffracted Beams. 5. Diffraction III: Non-Ideal Samples. 6. Laure Photographs. 7. Powder Photographs. 8. Diffractometer and Spectrometer. 9. Orientation and Quality of Single Crystals. 10. Structure of Polycrystalline Aggregates. 11. Determination of Crystal Structure. 12. Precise Parameter Measurements. 13. Phase-Diagram Determination. 14. Order-Disorder Transformation. 15. Chemical Analysis of X-ray Diffraction. 16. Chemical Analysis by X-ray Spectrometry. 17. Measurements of Residual Stress. 18. Polymers. 19. Small Angle Scatters. 20. Transmission Electron Microscope.

17,428 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid are reported, which opens a door to the synthesis of a large number of other 2D crystals.
Abstract: Currently, however, there are relatively few such atomically layered solids. [ 2–5 ] Here, we report on 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid. The large elastic moduli predicted by ab initio simulation, and the possibility of varying their surface chemistries (herein they are terminated by hydroxyl and/or fl uorine groups) render these nanosheets attractive as polymer composite fi llers. Theory also predicts that their bandgap can be tuned by varying their surface terminations. The good conductivity and ductility of the treated powders suggest uses in Li-ion batteries, pseudocapacitors, and other electronic applications. Since Ti 3 AlC 2 is a member of a 60 + group of layered ternary carbides and nitrides known as the MAX phases, this discovery opens a door to the synthesis of a large number of other 2D crystals. Arguably the most studied freestanding 2D material is graphene, which was produced by mechanical exfoliation into single-layers in 2004. [ 1 ] Some other layered materials, such as hexagonal BN, [ 2 ] transition metal oxides, and hydroxides, [ 4 ] as well as clays, [ 3 ] have also been exfoliated into 2D sheets. Interestingly, exfoliated MoS 2 single layers were reported as early as in 1986. [ 5 ] Graphene is fi nding its way to applications ranging from supercapacitor electrodes [ 6 ] to reinforcement in composites. [ 7 ] Although graphene has attracted more attention than all other 2D materials combined, its simple chemistry and the weak van der Waals bonding between layers in multilayer structures limit its use. Complex, layered structures that contain more than one element may offer new properties because they

6,846 citations

Journal ArticleDOI
TL;DR: It is shown how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries.
Abstract: Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

2,375 citations

Journal ArticleDOI
TL;DR: In this article, the spontaneous crystallization of monodisperse silica spheres into close-packed arrays is exploited for optical characterization of planar materials with diffractive optical properties.
Abstract: Materials whose dielectric constant varies spatially with submicrometer periodicity exhibit diffractive optical properties which are potentially valuable in a number of existing and emerging applications. Here, such systems are fabricated by exploiting the spontaneous crystallization of monodisperse silica spheres into close-packed arrays. By reliance on a vertical deposition technique to pack the spherical colloids into close-packed silica−air arrays, high quality samples can be prepared with thicknesses up to 50 μm. These samples are planar and thus suitable for optical characterization. Scanning electron microscopy (SEM) of these materials illustrates the close-packed ordering of the spherical colloids in planes parallel to the substrate; cross-sectional SEM micrographs of the arrays as well as optical methods are used to measure sample thickness and uniformity. Normal-incidence transmission spectra in the visible and near-infrared regions show distinct peaks due to diffraction from the colloidal layer...

1,997 citations

Journal ArticleDOI
TL;DR: Paul Scherrer and Peter Debye developed powder X-ray diffraction together, but it was Scherrer who figured out how to determine the size of crystallites from the broadening of diffraction peaks.
Abstract: Paul Scherrer and Peter Debye developed powder X-ray diffraction together, but it was Scherrer who figured out how to determine the size of crystallites from the broadening of diffraction peaks.

1,970 citations

Journal ArticleDOI
13 Apr 2007-Science
TL;DR: Three-dimensional covalent organic frameworks (3D COFs) were synthesized by targeting two nets based on triangular and tetrahedral nodes: ctn and bor and have high thermal stabilities and high surface areas and extremely low densities.
Abstract: Three-dimensional covalent organic frameworks (3D COFs) were synthesized by targeting two nets based on triangular and tetrahedral nodes: ctn and bor. The respective 3D COFs were synthesized as crystalline solids by condensation reactions of tetrahedral tetra(4-dihydroxyborylphenyl) methane or tetra(4-dihydroxyborylphenyl)silane and by co-condensation of triangular 2,3,6,7,10,11-hexahydroxytriphenylene. Because these materials are entirely constructed from strong covalent bonds (C-C, C-O, C-B, and B-O), they have high thermal stabilities (400° to 500°C), and they also have high surface areas (3472 and 4210 square meters per gram for COF-102 and COF-103, respectively) and extremely low densities (0.17 grams per cubic centimeter).

1,896 citations