scispace - formally typeset
Search or ask a question
Author

Bernaurdshaw Neppolian

Bio: Bernaurdshaw Neppolian is an academic researcher from SRM University. The author has contributed to research in topics: Photocatalysis & Materials science. The author has an hindex of 43, co-authored 162 publications receiving 7378 citations. Previous affiliations of Bernaurdshaw Neppolian include Osaka Prefecture University & Anna University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the photocatalytic activity of commercial ZnO powder has been investigated and compared with that of Degussa P25 TiO2 in terms of surface area, particle size and crystallinity.

1,458 citations

Journal ArticleDOI
TL;DR: TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation indicates that all the three dyes could be degraded completely at different time intervals and may be a viable technique for the safe disposal of textile wastewater into the water streams.

577 citations

Journal ArticleDOI
TL;DR: It is concluded that solar light induced degradation of textile dye in wastewater is a viable technique for wastewater treatment.

480 citations

Journal ArticleDOI
TL;DR: In this article, the metal ion-implantation method has been used to improve the electronic properties of the TiO2 photocatalyst to realize the utilization of visible light.

385 citations

Journal ArticleDOI
TL;DR: In this article, a series of nanocrystalline mesoporous ZrO2-TiO2 binary oxide photocatalysts with different wt% of ZRO2 and TiO2 were prepared by a sol-gel method.
Abstract: A series of nanocrystalline mesoporous ZrO2–TiO2 binary oxide photocatalysts with different wt% of ZrO2 and TiO2 were prepared by a sol–gel method. These binary oxide photocatalysts were characterized by XRD, N2 adsorption–desorption, DRS, FTIR, Raman spectroscopy, photoluminescence and TEM analyses. Detailed investigations revealed that the ZrO2–TiO2 catalysts are highly micro-crystalline in nature with a larger surface area than that of the pure TiO2 or ZrO2 catalysts since the added ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure, high surface area and acidity. The photocatalytic reactivity of the catalysts was investigated for the degradation of 4-chlorophenol in an aqueous phase in which the ZrO2–TiO2 photocatalysts were found to exhibit remarkably higher photocatalytic reactivity than that of pure TiO2 and ZrO2. The catalytic activity of the binary oxide photocatalysts for the degradation of 4-chlorophenol was observed to be gradually enhanced with an increase in the ZrO2 content and reached an optimum at 12 wt% of ZrO2 while maintaining the same percentage degradation with further loading of ZrO2 until 50 wt%. Such high reactivity is due to the easy transfer of the photo-formed electrons from the conduction band surface trap states of ZrO2 to the conduction band of TiO2 through strong chemical interactions, thereby, preventing the radiative recombination of the photo-formed electrons and holes. The ZrO2–TiO2 catalysts were, thus, found to be highly active for the efficient degradation of 4-chlorophenol and, in fact, exhibited just as efficient activity as the commercial P-25, Degussa TiO2 catalysts, and a new reaction mechanism has, hereby, been proposed.

216 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the Na2O/Na2O 2 mixture at the stationary phase and shows clear patterns in the response of these two materials to each other.
Abstract: Jenny Schneider,*,† Masaya Matsuoka,‡ Masato Takeuchi,‡ Jinlong Zhang, Yu Horiuchi,‡ Masakazu Anpo,‡ and Detlef W. Bahnemann*,† †Institut fur Technische Chemie, Leibniz Universitaẗ Hannover, Callinstrasse 3, D-30167 Hannover, Germany ‡Faculty of Engineering, Osaka Prefecture University, 1 Gakuen-cho, Sakai Osaka 599-8531, Japan Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China

4,353 citations

Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production is reviewed, based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range.
Abstract: Nano-sized TiO 2 photocatalytic water-splitting technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy. Presently, the solar-to-hydrogen energy conversion efficiency is too low for the technology to be economically sound. The main barriers are the rapid recombination of photo-generated electron/hole pairs as well as backward reaction and the poor activation of TiO 2 by visible light. In response to these deficiencies, many investigators have been conducting research with an emphasis on effective remediation methods. Some investigators studied the effects of addition of sacrificial reagents and carbonate salts to prohibit rapid recombination of electron/hole pairs and backward reactions. Other research focused on the enhancement of photocatalysis by modification of TiO 2 by means of metal loading, metal ion doping, dye sensitization, composite semiconductor, anion doping and metal ion-implantation. This paper aims to review the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production. Based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range. Therefore, they play an important role in the development of efficient photocatalytic hydrogen production.

3,714 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation.
Abstract: The photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation. The mechanism of the photodegradation depends on the radiation used. Charge injection mechanism takes place under visible radiation whereas charge separation occurred under UV light radiation. The process is monitored by following either the decolorization rate and the formation of its end-products. Kinetic analyses indicate that the photodegradation rates of azo dyes can usually be approximated as pseudo-first-order kinetics for both degradation mechanisms, according to the Langmuir–Hinshelwood model. The degradation of dyes depend on several parameters such as pH, catalyst concentration, substrate concentration and the presence of electron acceptors such as hydrogen peroxide and ammonium persulphate besides molecular oxygen. The presence of other substances such as inorganic ions, humic acids and solvents commonly found in textile effluents is also discussed. The photocatalyzed degradation of pesticides does not occur instantaneously to form carbon dioxide, but through the formation of long-lived intermediate species. Thus, the study focuses also on the determination of the nature of the principal organic intermediates and the evolution of the mineralization as well as on the degradation pathways followed during the process. Major identified intermediates are hydroxylated derivatives, aromatic amines, naphthoquinone, phenolic compounds and several organic acids. By-products evaluation and toxicity measurements are the key-actions in order to assess the overall process.

3,692 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations