scispace - formally typeset
Search or ask a question
Author

Bernd G. Pfrommer

Bio: Bernd G. Pfrommer is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Chemical shift & Ab initio. The author has an hindex of 17, co-authored 34 publications receiving 3460 citations. Previous affiliations of Bernd G. Pfrommer include Lawrence Berkeley National Laboratory & University of California, Berkeley.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a quasi-Newton method is used to simultaneously relax the internal coordinates and lattice parameters of crystals under pressure, and the symmetry of the crystal structure is preserved during the relaxation.

2,209 citations

Journal ArticleDOI
15 Jan 2018
TL;DR: Kumar et al. as mentioned in this paper presented a filter-based stereo visual inertial odometry that uses the multistate constraint Kalman filter, which is comparable to state-of-the-art monocular solutions in terms of computational cost.
Abstract: In recent years, vision-aided inertial odometry for state estimation has matured significantly. However, we still encounter challenges in terms of improving the computational efficiency and robustness of the underlying algorithms for applications in autonomous flight with microaerial vehicles, in which it is difficult to use high-quality sensors and powerful processors because of constraints on size and weight. In this letter, we present a filter-based stereo visual inertial odometry that uses the multistate constraint Kalman filter. Previous work on the stereo visual inertial odometry has resulted in solutions that are computationally expensive. We demonstrate that our stereo multistate constraint Kalman filter (S-MSCKF) is comparable to state-of-the-art monocular solutions in terms of computational cost, while providing significantly greater robustness. We evaluate our S-MSCKF algorithm and compare it with state-of-the-art methods including OKVIS, ROVIO, and VINS-MONO on both the EuRoC dataset and our own experimental datasets demonstrating fast autonomous flight with a maximum speed of 17.5 m/s in indoor and outdoor environments. Our implementation of the S-MSCKF is available at https://github.com/KumarRobotics/msckf_vio.

285 citations

Journal ArticleDOI
09 Feb 2018
TL;DR: This letter presents a large dataset with a synchronized stereo pair event based camera system, carried on a handheld rig, flown by a hexacopter, driven on top of a car, and mounted on a motorcycle, in a variety of different illumination levels and environments.
Abstract: Event-based cameras are a new passive sensing modality with a number of benefits over traditional cameras, including extremely low latency, asynchronous data acquisition, high dynamic range, and very low power consumption. There has been a lot of recent interest and development in applying algorithms to use the events to perform a variety of three-dimensional perception tasks, such as feature tracking, visual odometry, and stereo depth estimation. However, there currently lacks the wealth of labeled data that exists for traditional cameras to be used for both testing and development. In this letter, we present a large dataset with a synchronized stereo pair event based camera system, carried on a handheld rig, flown by a hexacopter, driven on top of a car, and mounted on a motorcycle, in a variety of different illumination levels and environments. From each camera, we provide the event stream, grayscale images, and inertial measurement unit (IMU) readings. In addition, we utilize a combination of IMU, a rigidly mounted lidar system, indoor and outdoor motion capture, and GPS to provide accurate pose and depth images for each camera at up to 100 Hz. For comparison, we also provide synchronized grayscale images and IMU readings from a frame-based stereo camera system.

280 citations

Journal ArticleDOI
TL;DR: The hydrogenigma is computed for a set of free molecules, for an ionic crystal LiH, and for a H-bonded crystal HF, using density functional theory in the local density approximation, in excellent agreement with experimental data.
Abstract: We present a theory for the {ital ab} {ital initio} computation of NMR chemical shifts ({sigma}) in condensed matter systems, using periodic boundary conditions. Our approach can be applied to periodic systems such as crystals, surfaces, or polymers and, with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. We have computed the hydrogen {sigma} for a set of free molecules, for an ionic crystal LiH, and for a H-bonded crystal HF, using density functional theory in the local density approximation. The results are in excellent agreement with experimental data. {copyright} {ital 1996 The American Physical Society.}

257 citations

Journal ArticleDOI
TL;DR: The hydrogen-bond geometry in liquid water from 0 to 80 degrees C is determined by combining measurements of the proton magnetic shielding tensor with ab initio density functional calculations and the resulting moments of the distributions of hydrogen-Bond length and angle are direct measures of thermal disorder in the hydrogen- bond network.
Abstract: We have determined the hydrogen-bond geometry in liquid water from 0 to 80 °C by combining measurements of the proton magnetic shielding tensor with ab initio density functional calculations. The resulting moments of the distributions of hydrogen-bond length and angle are direct measures of thermal disorder in the hydrogen-bond network.These moments, and the distribution functions that can be reconstructed from them, impose quantitative constraints on structural models of liquid water.

183 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Abstract: Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs).

5,400 citations

Journal ArticleDOI
TL;DR: The "polymer chemistry" of g-C(3)N(4) is described, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst.
Abstract: Polymeric graphitic carbon nitride materials (for simplicity: g-C(3)N(4)) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g-C(3)N(4) is a medium-bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the "polymer chemistry" of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g-C(3)N(4) and its modifications have a high thermal and chemical stability and can catalyze a number of "dream reactions", such as photochemical splitting of water, mild and selective oxidation reactions, and--as a coactive catalytic support--superactive hydrogenation reactions. As carbon nitride is metal-free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.

2,735 citations

Book
01 Jan 2004
TL;DR: In this paper, the Kohn-Sham ansatz is used to solve the problem of determining the electronic structure of atoms, and the three basic methods for determining electronic structure are presented.
Abstract: Preface Acknowledgements Notation Part I. Overview and Background Topics: 1. Introduction 2. Overview 3. Theoretical background 4. Periodic solids and electron bands 5. Uniform electron gas and simple metals Part II. Density Functional Theory: 6. Density functional theory: foundations 7. The Kohn-Sham ansatz 8. Functionals for exchange and correlation 9. Solving the Kohn-Sham equations Part III. Important Preliminaries on Atoms: 10. Electronic structure of atoms 11. Pseudopotentials Part IV. Determination of Electronic Structure, The Three Basic Methods: 12. Plane waves and grids: basics 13. Plane waves and grids: full calculations 14. Localized orbitals: tight binding 15. Localized orbitals: full calculations 16. Augmented functions: APW, KKR, MTO 17. Augmented functions: linear methods Part V. Predicting Properties of Matter from Electronic Structure - Recent Developments: 18. Quantum molecular dynamics (QMD) 19. Response functions: photons, magnons ... 20. Excitation spectra and optical properties 21. Wannier functions 22. Polarization, localization and Berry's phases 23. Locality and linear scaling O (N) methods 24. Where to find more Appendixes References Index.

2,690 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the use of Wannier functions in the context of electronic-structure theory, including their applications in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization.
Abstract: The electronic ground state of a periodic system is usually described in terms of extended Bloch orbitals, but an alternative representation in terms of localized "Wannier functions" was introduced by Gregory Wannier in 1937. The connection between the Bloch and Wannier representations is realized by families of transformations in a continuous space of unitary matrices, carrying a large degree of arbitrariness. Since 1997, methods have been developed that allow one to iteratively transform the extended Bloch orbitals of a first-principles calculation into a unique set of maximally localized Wannier functions, accomplishing the solid-state equivalent of constructing localized molecular orbitals, or "Boys orbitals" as previously known from the chemistry literature. These developments are reviewed here, and a survey of the applications of these methods is presented. This latter includes a description of their use in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization. Wannier interpolation schemes are also reviewed, by which quantities computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer meshes at low cost, and applications in which Wannier functions are used as efficient basis functions are discussed. Finally the construction and use of Wannier functions outside the context of electronic-structure theory is presented, for cases that include phonon excitations, photonic crystals, and cold-atom optical lattices.

2,217 citations