scispace - formally typeset
Search or ask a question
Author

Bernd-Holger Schlingloff

Other affiliations: Fokus, Humboldt State University, Fraunhofer Society  ...read more
Bio: Bernd-Holger Schlingloff is an academic researcher from Humboldt University of Berlin. The author has contributed to research in topics: Model checking & Test case. The author has an hindex of 13, co-authored 40 publications receiving 4970 citations. Previous affiliations of Bernd-Holger Schlingloff include Fokus & Humboldt State University.

Papers
More filters
Book
07 Jan 1999

4,478 citations

Journal ArticleDOI
28 Jun 1993
TL;DR: In this paper the theory of timing verification with time Petri nets and temporal logic is presented, a concrete model checking algorithm is developed and proved to be correct, and some experimental results demonstrating the efficiency of the method are given.
Abstract: This paper presents an efficient model checking algorithm for one–safe time Petri nets and a timed temporal logic. The approach is based on the idea of (1) using only differences of timing variables to be able to construct a finite representation of the set of all reachable states and (2) further reducing the size of this representation by exploiting the concurrency in the net. This reduction of the state space is possible, because the considered linear–time temporal logic is stuttering invariant. The firings of transitions are only partially ordered by causality and a given formula; therefore the order of firings of independent transitions is irrelevant, and only one of several equivalent interleavings has to be generated for the evaluation of the given formula. In this paper the theory of timing verification with time Petri nets and temporal logic is presented, a concrete model checking algorithm is developed and proved to be correct, and some experimental results demonstrating the efficiency of the method are given.

110 citations

Proceedings ArticleDOI
08 Jul 2003
TL;DR: In this article, the expressivity and complexity of hybrid logics on linear structures are investigated and the complexity of the satisfiability problem for these languages is shown to be NP-complete.
Abstract: We investigate expressivity and complexity of hybrid logics on linear structures. Hybrid logics are an enrichment of modal logics with certain first-order features which are algorithmically well behaved. Therefore, they are well suited for the specification of certain properties of computational systems. We show that hybrid logics are more expressive than usual modal and temporal logics on linear structures, and exhibit a hierarchy of hybrid languages. We determine the complexities of the satisfiability problem for these languages and define an existential fragment of hybrid logic for which satisfiability is still NP-complete. Finally, we examine the linear time model checking problem for hybrid logics and its complexity.

46 citations

Journal ArticleDOI
TL;DR: What is needed in order to provide verified reliable behaviour of an autonomous system is analyzed, what can be done as the state-of-the-art in automated verification is analysed, and a roadmap towards developing regulatory guidelines is proposed.
Abstract: A computational system is called autonomous if it is able to make its own decisions, or take its own actions, without human supervision or control. The capability and spread of such systems have reached the point where they are beginning to touch much of everyday life. However, regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace? We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators. Case studies in seven distinct domains illustrate the article.

35 citations

Posted Content
TL;DR: In this paper, the authors analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators.
Abstract: A computational system is called autonomous if it is able to make its own decisions, or take its own actions, without human supervision or control. The capability and spread of such systems have reached the point where they are beginning to touch much of everyday life. However, regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace? We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators. Case studies in seven distinct domains illustrate the article.

35 citations


Cited by
More filters
Book
07 Jan 1999

4,478 citations

Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

Journal ArticleDOI
TL;DR: Different approaches to the determination of upper bounds on execution times are described and several commercially available tools1 and research prototypes are surveyed.
Abstract: The determination of upper bounds on execution times, commonly called worst-case execution times (WCETs), is a necessary step in the development and validation process for hard real-time systems. This problem is hard if the underlying processor architecture has components, such as caches, pipelines, branch prediction, and other speculative components. This article describes different approaches to this problem and surveys several commercially available tools1 and research prototypes.

1,946 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Book ChapterDOI
08 Jul 2003
TL;DR: Counterexample-guided abstraction refinement is an automatic abstraction method where the key step is to extract information from false negatives ("spurious counterexamples") due to over-approximation.
Abstract: The main practical problem in model checking is the combinatorial explosion of system states commonly known as the state explosion problem. Abstraction methods attempt to reduce the size of the state space by employing knowledge about the system and the specification in order to model only relevant features in the Kripke structure. Counterexample-guided abstraction refinement is an automatic abstraction method where, starting with a relatively small skeletal representation of the system to be verified, increasingly precise abstract representations of the system are computed. The key step is to extract information from false negatives ("spurious counterexamples") due to over-approximation.

1,520 citations