scispace - formally typeset
Search or ask a question
Author

Bernd Mueller-Roeber

Bio: Bernd Mueller-Roeber is an academic researcher from University of Potsdam. The author has contributed to research in topics: Arabidopsis & Arabidopsis thaliana. The author has an hindex of 66, co-authored 195 publications receiving 16663 citations. Previous affiliations of Bernd Mueller-Roeber include Bayer & University of Freiburg.


Papers
More filters
Journal ArticleDOI
Sabeeha S. Merchant1, Simon E. Prochnik2, Olivier Vallon3, Elizabeth H. Harris4, Steven J. Karpowicz1, George B. Witman5, Astrid Terry2, Asaf Salamov2, Lillian K. Fritz-Laylin6, Laurence Maréchal-Drouard7, Wallace F. Marshall8, Liang-Hu Qu9, David R. Nelson10, Anton A. Sanderfoot11, Martin H. Spalding12, Vladimir V. Kapitonov13, Qinghu Ren, Patrick J. Ferris14, Erika Lindquist2, Harris Shapiro2, Susan Lucas2, Jane Grimwood15, Jeremy Schmutz15, Pierre Cardol3, Pierre Cardol16, Heriberto Cerutti17, Guillaume Chanfreau1, Chun-Long Chen9, Valérie Cognat7, Martin T. Croft18, Rachel M. Dent6, Susan K. Dutcher19, Emilio Fernández20, Hideya Fukuzawa21, David González-Ballester22, Diego González-Halphen23, Armin Hallmann, Marc Hanikenne16, Michael Hippler24, William Inwood6, Kamel Jabbari25, Ming Kalanon26, Richard Kuras3, Paul A. Lefebvre11, Stéphane D. Lemaire27, Alexey V. Lobanov17, Martin Lohr28, Andrea L Manuell29, Iris Meier30, Laurens Mets31, Maria Mittag32, Telsa M. Mittelmeier33, James V. Moroney34, Jeffrey L. Moseley22, Carolyn A. Napoli33, Aurora M. Nedelcu35, Krishna K. Niyogi6, Sergey V. Novoselov17, Ian T. Paulsen, Greg Pazour5, Saul Purton36, Jean-Philippe Ral7, Diego Mauricio Riaño-Pachón37, Wayne R. Riekhof, Linda A. Rymarquis38, Michael Schroda, David B. Stern39, James G. Umen14, Robert D. Willows40, Nedra F. Wilson41, Sara L. Zimmer39, Jens Allmer42, Janneke Balk18, Katerina Bisova43, Chong-Jian Chen9, Marek Eliáš44, Karla C Gendler33, Charles R. Hauser45, Mary Rose Lamb46, Heidi K. Ledford6, Joanne C. Long1, Jun Minagawa47, M. Dudley Page1, Junmin Pan48, Wirulda Pootakham22, Sanja Roje49, Annkatrin Rose50, Eric Stahlberg30, Aimee M. Terauchi1, Pinfen Yang51, Steven G. Ball7, Chris Bowler25, Carol L. Dieckmann33, Vadim N. Gladyshev17, Pamela J. Green38, Richard A. Jorgensen33, Stephen P. Mayfield29, Bernd Mueller-Roeber37, Sathish Rajamani30, Richard T. Sayre30, Peter Brokstein2, Inna Dubchak2, David Goodstein2, Leila Hornick2, Y. Wayne Huang2, Jinal Jhaveri2, Yigong Luo2, Diego Martinez2, Wing Chi Abby Ngau2, Bobby Otillar2, Alexander Poliakov2, Aaron Porter2, Lukasz Szajkowski2, Gregory Werner2, Kemin Zhou2, Igor V. Grigoriev2, Daniel S. Rokhsar6, Daniel S. Rokhsar2, Arthur R. Grossman22 
University of California, Los Angeles1, United States Department of Energy2, University of Paris3, Duke University4, University of Massachusetts Medical School5, University of California, Berkeley6, Centre national de la recherche scientifique7, University of California, San Francisco8, Sun Yat-sen University9, University of Tennessee Health Science Center10, University of Minnesota11, Iowa State University12, Genetic Information Research Institute13, Salk Institute for Biological Studies14, Stanford University15, University of Liège16, University of Nebraska–Lincoln17, University of Cambridge18, Washington University in St. Louis19, University of Córdoba (Spain)20, Kyoto University21, Carnegie Institution for Science22, National Autonomous University of Mexico23, University of Münster24, École Normale Supérieure25, University of Melbourne26, University of Paris-Sud27, University of Mainz28, Scripps Research Institute29, Ohio State University30, University of Chicago31, University of Jena32, University of Arizona33, Louisiana State University34, University of New Brunswick35, University College London36, University of Potsdam37, Delaware Biotechnology Institute38, Boyce Thompson Institute for Plant Research39, Macquarie University40, Oklahoma State University Center for Health Sciences41, İzmir University of Economics42, Academy of Sciences of the Czech Republic43, Charles University in Prague44, St. Edward's University45, University of Puget Sound46, Hokkaido University47, Tsinghua University48, Washington State University49, Appalachian State University50, Marquette University51
12 Oct 2007-Science
TL;DR: Analyses of the Chlamydomonas genome advance the understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Abstract: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

2,554 citations

Journal ArticleDOI
Jo Ann Banks1, Tomoaki Nishiyama2, Mitsuyasu Hasebe3, Mitsuyasu Hasebe4, John L. Bowman5, John L. Bowman6, Michael Gribskov1, Claude W. dePamphilis7, Victor A. Albert8, Naoki Aono4, Tsuyoshi Aoyama3, Tsuyoshi Aoyama4, Barbara A. Ambrose9, Neil W. Ashton10, Michael J. Axtell7, Elizabeth I. Barker10, Michael S. Barker11, Jeffrey L. Bennetzen12, Nicholas D. Bonawitz1, Clint Chapple1, Chaoyang Cheng, Luiz Gustavo Guedes Corrêa13, Michael Dacre14, Jeremy D. DeBarry12, Ingo Dreyer13, Marek Eliáš15, Eric M. Engstrom16, Mark Estelle17, Liang Feng12, Cédric Finet18, Sandra K. Floyd6, Wolf B. Frommer19, Tomomichi Fujita20, Lydia Gramzow21, Michael Gutensohn22, Michael Gutensohn1, Jesper Harholt23, Mitsuru Hattori24, Mitsuru Hattori25, Alexander Heyl26, Tadayoshi Hirai27, Yuji Hiwatashi3, Yuji Hiwatashi4, Masaki Ishikawa, Mineko Iwata, Kenneth G. Karol9, Barbara Koehler13, Uener Kolukisaoglu28, Uener Kolukisaoglu29, Minoru Kubo, Tetsuya Kurata30, Sylvie Lalonde19, Kejie Li1, Ying Li1, Ying Li31, Amy Litt9, Eric Lyons32, Gerard Manning14, Takeshi Maruyama20, Todd P. Michael33, Koji Mikami20, Saori Miyazaki34, Saori Miyazaki4, Shin-Ichi Morinaga4, Shin-Ichi Morinaga25, TakashiMurata4, TakashiMurata3, Bernd Mueller-Roeber35, David R. Nelson36, Mari Obara, Yasuko Oguri, Richard G. Olmstead37, Naoko T. Onodera38, Bent O. Petersen23, Birgit Pils39, Michael J. Prigge17, Stefan A. Rensing40, Diego Mauricio Riaño-Pachón35, Diego Mauricio Riaño-Pachón41, Alison W. Roberts42, Yoshikatsu Sato, Henrik Vibe Scheller43, Henrik Vibe Scheller32, Burkhard Schulz1, Christian Schulz44, Eugene V. Shakirov45, Nakako Shibagaki46, Naoki Shinohara20, Dorothy E. Shippen45, Iben Sørensen47, Iben Sørensen23, Ryo Sotooka20, Nagisa Sugimoto, Mamoru Sugita24, Naomi Sumikawa4, Milos Tanurdzic48, Günter Theißen21, Peter Ulvskov23, Sachiko Wakazuki, Jing-Ke Weng1, Jing-Ke Weng14, William G.T. Willats23, Daniel Wipf49, Paul G. Wolf50, Lixing Yang12, Andreas Zimmer40, Qihui Zhu12, Therese Mitros32, Uffe Hellsten51, Dominique Loqué43, Robert Otillar51, Asaf Salamov51, Jeremy Schmutz51, Harris Shapiro51, Erika Lindquist51, Susan Lucas51, Daniel S. Rokhsar32, Daniel S. Rokhsar51, Igor V. Grigoriev51 
20 May 2011-Science
TL;DR: The genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported, is reported, finding that the transition from a gametophytes- to a sporophyte-dominated life cycle required far fewer new genes than the Transition from a non Seed vascular to a flowering plant.
Abstract: Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.

750 citations

Journal ArticleDOI
TL;DR: The Plant Transcription Factor Database (PlnTFDB) is an integrative database that provides putatively complete sets of transcription factors and other transcriptional regulators in plant species whose genomes have been completely sequenced and annotated.
Abstract: The Plant Transcription Factor Database (PlnTFDB; http://plntfdb.bio.uni-potsdam.de/v3.0/) is an integrative database that provides putatively complete sets of transcription factors (TFs) and other transcriptional regulators (TRs) in plant species (sensu lato) whose genomes have been completely sequenced and annotated. The complete sets of 84 families of TFs and TRs from 19 species ranging from unicellular red and green algae to angiosperms are included in PlnTFDB, representing >1.6 billion years of evolution of gene regulatory networks. For each gene family, a basic description is provided that is complemented by literature references, and multiple sequence alignments of protein domains. TF or TR gene entries include information of expressed sequence tags, 3D protein structures of homologous proteins, domain architecture and cross-links to other computational resources online. Moreover, the different species in PlnTFDB are linked to each other by means of orthologous genes facilitating cross-species comparisons.

627 citations

Journal ArticleDOI
TL;DR: The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.
Abstract: During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.

550 citations

Journal ArticleDOI
TL;DR: QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data.
Abstract: Medium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR) assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays. Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet http://www.quantprime.de/ or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total), while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii show success rates of designed primer pairs exceeding 96%. QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays.

483 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.

8,259 citations

Journal ArticleDOI
TL;DR: Primer3’s current capabilities are described, including more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers.
Abstract: Polymerase chain reaction (PCR) is a basic molecular biology technique with a multiplicity of uses, including deoxyribonucleic acid cloning and sequencing, functional analysis of genes, diagnosis of diseases, genotyping and discovery of genetic variants. Reliable primer design is crucial for successful PCR, and for over a decade, the open-source Primer3 software has been widely used for primer design, often in high-throughput genomics applications. It has also been incorporated into numerous publicly available software packages and web services. During this period, we have greatly expanded Primer3’s functionality. In this article, we describe Primer3’s current capabilities, emphasizing recent improvements. The most notable enhancements incorporate more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers. Additional enhancements include more precise control of primer placement—a change motivated partly by opportunities to use whole-genome sequences to improve primer specificity. We also added features to increase ease of use, including the ability to save and re-use parameter settings and the ability to require that individual primers not be used in more than one primer pair. We have made the core code more modular and provided cleaner programming interfaces to further ease integration with other software. These improvements position Primer3 for continued use with genome-scale data in the decade ahead.

7,286 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations