scispace - formally typeset
Search or ask a question
Author

Bernd W. Scheithauer

Bio: Bernd W. Scheithauer is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Adenoma & Pituitary adenoma. The author has an hindex of 119, co-authored 729 publications receiving 55985 citations. Previous affiliations of Bernd W. Scheithauer include University of North Dakota & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: At a given time point of the disease, the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient, suggesting that MS may be a disease with heterogeneous pathogenetic mechanisms.
Abstract: Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course, neuroradiological appearance of the lesions, involvement of susceptibility gene loci, and response to therapy. These features are supported by experimental evidence, which demonstrates that fundamentally different processes, such as autoimmunity or virus infection, may induce MS-like inflammatory demyelinating plaques and suggest that MS may be a disease with heterogeneous pathogenetic mechanisms. From a large pathology sample of MS, collected in three international centers, we selected 51 biopsies and 32 autopsies that contained actively demyelinating lesions defined by stringent criteria. The pathology of the lesions was analyzed using a broad spectrum of immunological and neurobiological markers. Four fundamentally different patterns of demyelination were found, defined on the basis of myelin protein loss, the geography and extension of plaques, the patterns of oligodendrocyte destruction, and the immunopathological evidence of complement activation. Two patterns (I and II) showed close similarities to T-cell‐mediated or T-cell plus antibody‐mediated autoimmune encephalomyelitis, respectively. The other patterns (III and IV) were highly suggestive of a primary oligodendrocyte dystrophy, reminiscent of virus- or toxin-induced demyelination rather than autoimmunity. At a given time point of the disease—as reflected in autopsy cases—the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient. This pathogenetic heterogeneity of plaques from different MS patients may have fundamental implications for the diagnosis and therapy of this disease.

3,162 citations

Journal ArticleDOI
TL;DR: The new edition of the World Health Organization (WHO) book on ‘Histological Typing of Tumours of the Central Nervous System’ reflects the progress in brain tumour classification which has been achieved since publication of the first edition in 1979.
Abstract: The new edition of the World Health Organization (WHO) book on 'Histological Typing of Tumours of the Central Nervous System' reflects the progress in brain tumour classification which has been achieved since publication of the first edition in 1979. Several new tumour entities have been added, including the pleomorphic xanthoastrocytoma, central neurocytoma, the infantile desmoplastic astrocytoma/ganglioglioma, and the dysembryoplastic neuroepithelial tumour. The list of histological variants has also been expanded. In line with recent morphological and molecular data on glioma progression, the glioblastoma is now grouped together with astrocytic tumours. The classification of childhood tumours has been largely retained, the diagnosis primitive neuroectodermal tumour (PNET) only being recommended as a generic term for cerebellar medulloblastomas and neoplasms that are histologically indistinguishable from medulloblastoma but located in the CNS at sites other than the cerebellum. The WHO grading scheme was revised and adapted to new entities but its use, as before, remains optional.

1,532 citations

Journal ArticleDOI
15 May 1986-Cancer
TL;DR: The MPNST is an aggressive uncommon neoplasm, and large tumor size, the presence of neurofibromatosis, and total resection are the most important prognostic indicators.
Abstract: A review was done of 120 cases of malignant peripheral nerve sheath tumor (MPNST) seen during a 71-year period. Of the 120 patients, 52 were males and 68 were females with a mean age at diagnosis of 35.3 years; 12 patients were younger than 20 years. The series included 62 (52%) patients with neurofibromatosis, 13 (11%) with postradiation sarcomas, and 19 (16%) with metaplastic foci. The incidence of MPNST arising in neurofibromatosis was 4.6% in the current series and 0.001% in the general clinic population. Tumors greater than 5 cm and the presence of neurofibromatosis adversely affected the prognosis (P less than 0.05). When both features were present, survival was greatly decreased. Patients with tumor in the extremities did better than those with head or neck lesions. Metaplastic foci or previous radiation at the tumor site did not alter the prognosis. Each tumor was graded 1 to 4 on the basis of cellularity, pleomorphism, mitotic index, and necrosis. No significant correlation was noted between survival and either grade or mitotic rate. Survival was improved when total rather than subtotal resection was done. This was most marked in patients with a small lesion, which may reflect the difficulty in adequately excising large tumors. Adjuvant radiation or chemotherapy did not appear to affect survival. The MPNST is an aggressive uncommon neoplasm, and large tumor size, the presence of neurofibromatosis, and total resection are the most important prognostic indicators.

1,448 citations

Book
05 Oct 2014
TL;DR: In this article, the Histological Classification of CNS Tumours is presented, including Neuroepithelial Tissue Astrocytic, Ependymal, Mixed Gliomas, Choroid Plexus Tumour-like Lesions, Primary Melanocytic Lesions and Haemopoietic Neoplasms.
Abstract: Introduction Histological Classification of CNS Tumours Definitions and Explanatory Notes Tumours of Neuroepithelial Tissue Astrocytic Tumours Ependymal Tumours Mixed Gliomas Choroid Plexus Tumours Neuroepithelial Tumours of Uncertain Origin Neuronal and Mixed Neuronal-Glial Tumours Pineal Parenchymal Tumours Embryonal Tumours Tumours of Cranial and Spinal Nerves Schwannoma Neurofibroma Malignant Peripheral Nerve Sheath Tumor Tumours of the Meninges Tumours of Menigothelial Cells Mesenchymal, Non-menigothelial Tumours Primary Melanocytic Lesions Lymphomas and Haemopoietic Neoplasms Germ Cell Tumours Cysts and Tumour-like Lesions Tumours of the Sellar Region Local Extensions from Regional Tumours Metastatic Tumours Unclassified Tumours Illustrations Subject Index Metat Cy Tu

953 citations

Journal ArticleDOI
TL;DR: In this cohort of patients with early-stage multiple sclerosis, cortical demyelinating lesions were frequent, inflammatory, and strongly associated with meningeal inflammation.
Abstract: Background Cortical disease has emerged as a critical aspect of the pathogenesis of multiple sclerosis, being associated with disease progression and cognitive impairment. Most studies of cortical lesions have focused on autopsy findings in patients with long-standing, chronic, progressive multiple sclerosis, and the noninflammatory nature of these lesions has been emphasized. Magnetic resonance imaging studies indicate that cortical damage occurs early in the disease. Methods We evaluated the prevalence and character of demyelinating cortical lesions in patients with multiple sclerosis. Cortical tissues were obtained in passing during biopsy sampling of white-matter lesions. In most cases, biopsy was done with the use of stereotactic procedures to diagnose suspected tumors. Patients with sufficient cortex (138 of 563 patients screened) were evaluated for cortical demyelination. Using immunohistochemistry, we characterized cortical lesions with respect to demyelinating activity, inflammatory infiltrates, ...

924 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
TL;DR: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor and is hoped that it will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
Abstract: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.

11,197 citations

Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

01 Jan 2002
TL;DR: This list includes tumours of undefined neoplastic nature, which are of uncertain differentiation Bone Tumours, Ewing sarcoma/Primitive neuroedtodermal tumour, Myogenic, lipogenic, neural and epithelial tumours, and others.

4,185 citations

Journal ArticleDOI
TL;DR: Astrocyte functions in healthy CNS, mechanisms and functions of reactive astrogliosis and glial scar formation, and ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions are reviewed.
Abstract: Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions.

4,075 citations