scispace - formally typeset
Search or ask a question
Author

Bernd W. Scheithauer

Bio: Bernd W. Scheithauer is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Superior tibiofibular joint & Galactorrhea. The author has an hindex of 8, co-authored 9 publications receiving 12924 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
TL;DR: Three unusual cases together with data obtained from a retrospective review of the authors' clinical material and findings reported in the literature provide firm evidence for mechanisms underlying intraneural ganglia formation.
Abstract: Object The pathogenesis of intraneural ganglia has been a controversial issue for longer than a century. Recently the authors identified a stereotypical pattern of occurrence of peroneal and tibial intraneural ganglia, and based on an understanding of their pathogenesis provided a unifying articular explanation. Atypical features, which occasionally are observed, have offered an opportunity to verify further and expand on the authors' proposed theory. Methods Three unusual cases are presented to exemplify the dynamic features of peroneal and tibial intraneural ganglia formation. Results Two patients with a predominant deep peroneal nerve deficit shared essential anatomical findings common to peroneal intraneural ganglia: namely, 1) joint connections to the anterior portion of the superior tibiofibular joint, and 2) dissection of the cyst along the articular branch of the peroneal nerve and proximally. Magnetic resonance (MR) images obtained in these patients demonstrated some unusual findings, including t...

103 citations

Journal ArticleDOI
TL;DR: Twenty-seven hemangioblastomas of the central nervous system were treated at the Mayo Clinic with radiation therapy from January 1963 to August 1983 and in-field disease control appeared to be improved when patients were treated more aggressively.
Abstract: Twenty-seven hemangioblastomas of the central nervous system were treated at the Mayo Clinic with radiation therapy from January 1963 to August 1983. Six patients had von-Hippel Lindau syndrome, and four presented with polycythemia. The median age among the 15 males and 12 females was 48 years (range 20-68). Two clinical groups were apparent: those that received postoperative radiation therapy for clinically suspect, or microscopically positive margins (6 patients) and those who underwent therapy for gross residual disease (20 patients). One patient did not fall into either group because his initially unresectable tumor was treated with planned pre-operative radiotherapy to 40 Gy and was subsequently successfully cured by surgery. Because the combined modality approach did not allow assessment of local control with radiation alone, he was excluded from the gross residual cohort in terms of time-dose relationship analysis. The cohort with gross residual disease was particularly unfavorable as 12 of these patients had developed 17 local recurrences prior to radiation. Three had multiple lesions, and four had the von-Hippel Lindau syndrome. In-field disease control appeared to be improved when patients were treated more aggressively. Patients treated to a dose of 50 Gy manifested local control in 4/7 (57%) vs 4/12 (33%) in patients treated to less than 50 Gy. In-field local control was also better if patients received a TDF greater than 75 (local control in 66%) vs a TDF of 65-75 (local control in 22%). Actuarial analysis of in-field disease control showed more aggressive treatment improved control whether analyzed by dose level (greater than or equal to 50 Gy vs less than 50 Gy, or TDF greater than 75 vs less than 75). Four of the six patients who received radiation therapy for microscopically positive or clinically suspect margins achieved local control. Both patients manifesting in-field relapse were successfully surgically salvaged. Overall survival for the entire group of 27 patients was 85%, 58%, 58%, and 46% at 5, 10, 15, and 20 years, respectively. Recurrence-free survival was 76%, 52%, and 42% at 5, 10, and 15 years, respectively. Half of all in-field recurrences had occurred by 2 years, but the remaining half recurred from 5.6 to 14.4 years. Patients who developed in-field failure usually died from disease with a median survival of only 1.5 years, but surgical salvage was accomplished in 4/12. Hydro-myelia developed in two patients and required operation. Surveillance for systemic tumors also was important and revealed seven benign and four malignant tumors.(ABSTRACT TRUNCATED AT 400 WORDS)

70 citations

Journal Article
TL;DR: Three cases ofCapillary hemangioblastoma occurring in peripheral nerve, two intradural tumors arising in a C4 and a cauda equina nerve root, respectively, and a third lesion in the sciatic nerve at mid thigh are reported.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

Journal ArticleDOI
26 Sep 2008-Science
TL;DR: Recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival.
Abstract: Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.

5,250 citations

Journal ArticleDOI
TL;DR: Astrocyte functions in healthy CNS, mechanisms and functions of reactive astrogliosis and glial scar formation, and ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions are reviewed.
Abstract: Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions.

4,075 citations

Journal ArticleDOI
TL;DR: The authors found that approximately 5% of patients with malignant gliomas have a family history of glioma and most of these familial cases are associated with rare genetic syndromes, such as neurofibromatosis types 1 and 2, the Li−Fraumeni syndrome (germ-line p53 mutations associated with an increased risk of several cancers), and Turcot's syndrome (intestinal polyposis and brain tumors).
Abstract: Approximately 5% of patients with malignant gliomas have a family history of gliomas. Some of these familial cases are associated with rare genetic syndromes, such as neurofibromatosis types 1 and 2, the Li−Fraumeni syndrome (germ-line p53 mutations associated with an increased risk of several cancers), and Turcot’s syndrome (intestinal polyposis and brain tumors). 10 However, most familial cases have

3,823 citations

Journal ArticleDOI
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

3,699 citations