scispace - formally typeset
Search or ask a question
Author

Bernhard A. Schrefler

Bio: Bernhard A. Schrefler is an academic researcher from University of Padua. The author has contributed to research in topics: Finite element method & Porous medium. The author has an hindex of 52, co-authored 326 publications receiving 10526 citations. Previous affiliations of Bernhard A. Schrefler include Houston Methodist Hospital & Technische Universität München.


Papers
More filters
Book
01 Jan 1998
TL;DR: In this paper, the Methode des elements finis finis was used to define sols non satures, and a reference record was created on 2004-09-07, modified on 2016-08-08.
Abstract: Keywords: Methode des elements finis ; Sols non satures ; Consolidation Reference Record created on 2004-09-07, modified on 2016-08-08

1,329 citations

Journal ArticleDOI
TL;DR: In this article, a review of multiscale methods for modeling mechanical and thermomechanical responses of composites is presented, both at the material level and at the structural analysis level.
Abstract: Various multiscale methods are reviewed in the context of modelling mechanical and thermomechanical responses of composites. They are developed both at the material level and at the structural analysis level, considering sequential or integrated kinds of approaches. More specifically, such schemes like periodic homogenization or mean field approaches are compared and discussed, especially in the context of non linear behaviour. Some recent developments are considered, both in terms of numerical methods (like FE2) and for more analytical approaches based on Transformation Field Analysis, considering both the homogenization and relocalisation steps in the multiscale methodology. Several examples are shown.

489 citations

Book
01 Jan 1987
TL;DR: In this article, the governing equations of multiphase flow in a Deforming Porous Medium (DPM) secondary consolidation program are used to validate Elastic and Elasto-plastic Consolidation Programs.
Abstract: Introduction The Governing Equations of Multiphase Flow in a Deforming Porous Medium Numerical Solutions of the Governing Equations Constitutive Relationships and Variable Permeabilities Validation of Elastic and Elasto-plastic Consolidation Programs Modelling of Subsidence Heat and Fluid Flow in Deforming Porous Media Secondary Consolidation Two- dimensional, Non-linear Thermoelastoplastic Consolidation Program Plascon.

396 citations

Journal ArticleDOI
TL;DR: In this article, a computational analysis of hygro-thermal and mechanical behavior of concrete structures at high temperature is presented, and the evaluation of thermal, hygral and mechanical performance of this material, including damage effects, needs the knowledge of the heat and mass transfer processes.
Abstract: A computational analysis of hygro-thermal and mechanical behaviour of concrete structures at high temperature is presented. The evaluation of thermal, hygral and mechanical performance of this material, including damage effects, needs the knowledge of the heat and mass transfer processes. These are simulated within the framework of a coupled model where non-linearities due to high temperatures are accounted for. The constitutive equations are discussed in some detail. The discretization of the governing equations is carried out by Finite Elements in space and Finite Differences in time. Copyright © 1999 John Wiley & Sons, Ltd.

335 citations

Journal ArticleDOI
TL;DR: In this paper, the governing equations of moisture, heat and carbon dioxide flows through concrete within the framework of a distributed parameter model, and a numerical procedure based on the finite element method is developed to solve the set of equations.

275 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Reference EntryDOI
15 Nov 2004
TL;DR: The mathematical structure of the contact formulation for finite element methods is derived on the basis of a continuum description of contact, and several algorithms related to spatial contact search and fulfillment of the inequality constraints at the contact interface are discussed.
Abstract: This paper describes modern techniques used to solve contact problems within Computational Mechanics. On the basis of a continuum description of contact, the mathematical structure of the contact formulation for finite element methods is derived. Emphasis is also placed on the constitutive behavior at the contact interface for normal and tangential (frictional) contact. Furthermore, different discretization schemes currently applied to solve engineering problems are formulated for small and finite strain problems. These include isoparametric interpolations, node-to-segment discretizations and also mortar and Nitsche techniques. Furthermore, several algorithms related to spatial contact search and fulfillment of the inequality constraints at the contact interface are discussed. Here, especially the penalty and Lagrange multiplier schemes are considered and also SQP- and linear-programming methods are reviewed. Keywords: contact mechanics; friction; penalty method; Lagrange multiplier method; contact algorithms; finite element method; finite deformations; discretization methods

1,761 citations

01 Jan 2016
TL;DR: The properties of concrete is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading properties of concrete. As you may know, people have look hundreds times for their chosen readings like this properties of concrete, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they juggled with some malicious virus inside their computer. properties of concrete is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the properties of concrete is universally compatible with any devices to read.

1,701 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations