scispace - formally typeset
Search or ask a question
Author

Bernhard H. F. Weber

Bio: Bernhard H. F. Weber is an academic researcher from University of Regensburg. The author has contributed to research in topics: Macular degeneration & Gene. The author has an hindex of 73, co-authored 406 publications receiving 22232 citations. Previous affiliations of Bernhard H. F. Weber include University of Freiburg & UCL Institute of Ophthalmology.


Papers
More filters
Journal ArticleDOI
TL;DR: The results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Abstract: Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.

1,088 citations

Journal ArticleDOI
TL;DR: This work analyzed 93 single nucleotide polymorphisms for allelic association with AMD in two independent case-control cohorts of German origin and found the strongest association centered over a frequent coding polymorphism, Ala69Ser, at LOC387715, strongly implicating this gene in the pathogenesis of AMD.
Abstract: Age-related macular degeneration (AMD) is a multifactorial disease and a prevalent cause of visual impairment in developed countries. Risk factors include environmental components and genetic determinants. The complement factor H (CFH) has been the first major susceptibility gene for AMD identified within 1q32. Here, we focused on a second region of interest in 10q26 where a recent meta-analysis revealed strongest evidence for linkage to AMD at a genome-wide significance level. Within an interval of 22 Mb, we have analyzed 93 single nucleotide polymorphisms for allelic association with AMD in two independent case-control cohorts of German origin (AMD(combined) n=1166; controls(combined) n=945). Significant association was found across a 60 kb region of high linkage disequilibrium harboring two genes PLEKHA1 and hypothetical LOC387715. The strongest association (P=10(-34)) centered over a frequent coding polymorphism, Ala69Ser, at LOC387715, strongly implicating this gene in the pathogenesis of AMD. Besides abundant expression in placenta, we demonstrate weak expression of LOC387715 in the human retina. At present, however, there is no functional information on this gene, which appears to have evolved recently within the primate lineage. The joint contribution of the common risk allele at LOC387715, Ala69Ser, and at CFH, Tyr402His, was assessed in our case-control population, which suggests an additive model indicating an independent contribution of the two gene loci to disease risk. Our data show a disease odds ratio of 57.6 (95% CI: 37.2, 89.0) conferred by homozygosity for risk alleles at both CFH and LOC387715 when compared with the baseline non-risk genotype.

781 citations

Journal ArticleDOI
Lars G. Fritsche1, Lars G. Fritsche2, Wei Chen1, Wei Chen3  +182 moreInstitutions (60)
TL;DR: A collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry, identifies 19 loci associated at P < 5 × 10−8, which show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis.
Abstract: Age-related macular degeneration (AMD) is a common cause of blindness in older individuals To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry We identified 19 loci associated at P < 5 × 10(-8) These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined Our findings provide new directions for biological, genetic and therapeutic studies of AMD

745 citations

Journal ArticleDOI
TL;DR: Point mutations in the TIMP3 gene are identified in affected members of two SFD pedigrees and are predicted to disrupt the tertiary structure and thus the functional properties of the mature protein.
Abstract: The hereditary macular dystrophies are progressive degenerations of the central retina and contribute significantly to irreversible visual loss in developed countries. Among these disorders, Sorsby's fundus dystrophy (SFD), an autosomal dominant condition, provides an excellent mendelian model for the study of the genetically complex age-related macular degeneration (AMD), the most common maculopathy in the elderly. Recently, we mapped the SFD locus to 22q13-qter. This same region contains the gene for tissue inhibitor of metalloproteinases-3 (TIMP3), which is known to play a pivotal role in extracellular matrix remodeling. We have now identified point mutations in the TIMP3 gene in affected members of two SFD pedigrees. These mutations are predicted to disrupt the tertiary structure and thus the functional properties of the mature protein.

654 citations

Journal ArticleDOI
TL;DR: The locus for the incomplete form of X-linked congenital stationary night blindness maps to a 1.1-Mb region in Xp11.23 between markers DXS722 and DXS255, and a retina-specific calcium channel α 1-subunit gene (CACNA1F) is identified in this region.
Abstract: The locus for the incomplete form of X-linked congenital stationary night blindness (CSNB2) maps to a 1.1-Mb region in Xp11.23 between markers DXS722 and DXS255. We identified a retina-specific calcium channel alpha1-subunit gene (CACNA1F) in this region, consisting of 48 exons encoding 1966 amino acids and showing high homology to L-type calcium channel alpha1-subunits. Mutation analysis in 13 families with CSNB2 revealed nine different mutations in 10 families, including three nonsense and one frameshift mutation. These data indicate that aberrations in a voltage-gated calcium channel, presumably causing a decrease in neurotransmitter release from photoreceptor presynaptic terminals, are a frequent cause of CSNB2.

482 citations


Cited by
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
26 Mar 1993-Cell
TL;DR: In this article, the authors used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect, which is expanded and unstable on HD chromosomes.

7,224 citations

Journal Article
25 Mar 1993-Cell
TL;DR: The Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

6,992 citations

Journal ArticleDOI
TL;DR: This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.
Abstract: Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases play a central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. Currently 23 MMP genes have been identified in humans, and most are multidomain proteins. This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.

4,411 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations