scispace - formally typeset
Search or ask a question
Author

Bernhard Lüscher

Bio: Bernhard Lüscher is an academic researcher from RWTH Aachen University. The author has contributed to research in topics: Phosphorylation & GABAA receptor. The author has an hindex of 80, co-authored 263 publications receiving 21481 citations. Previous affiliations of Bernhard Lüscher include Hannover Medical School & Fred Hutchinson Cancer Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Book ChapterDOI
TL;DR: This chapter focuses on c-Myc's role as a transcription factor in the regulation of cell growth, apoptosis, and transformation and suggests that the most exciting recent findings suggest that the Myc network not only includes proto-oncoproteins but, with the Mad family proteins, also potential tumor suppressors.
Abstract: Publisher Summary This chapter focuses on the proteins of the Myc network that are essential regulators of cell growth and differentiation. The identification of the Myc partner, Max, in 1991 and the subsequent realization that this protein is the essential dimeric partner for all known c-Myc functions was a major boost to the field and led to a number of very interesting observations and findings. The chapter focuses on c-Myc's role as a transcription factor in the regulation of cell growth, apoptosis, and transformation. The most exciting recent findings suggest that the Myc network not only includes proto-oncoproteins (c-, N-, and L-Myc) but, with the Mad family proteins, also potential tumor suppressors. This together with the fact that Myc proteins as well as Max are essential, as deduced from homozygous disruption of the genes in mice, places the Myc network in a central position in the regulation of cell growth and homeostasis. Genes that have been generated by the duplication of and divergence from an ancestral gene(s) are grouped into families. The myc family of protooncogenes has most likely arisen through such duplications. It currently consists of three well-characterized members; c-myc, N-myc, and L-myc. Two additional genes, B-myc and S-myc, have been identified only in rodents. The c-, N-, and L-myc genes share similar genomic organization and the corresponding proteins contain several regions of high sequence homology. The identification of the Myc dimerization partner Max has significantly advanced our understanding of the molecular function of c-Myc.

787 citations

Journal ArticleDOI
TL;DR: A new consensus nomenclature for all ADP-ribosyltransferases (ARTs) based on the catalyzed reaction and on structural features is proposed to facilitate communication between researchers both inside and outside the ADP, ribosylation field.

736 citations

Journal ArticleDOI
TL;DR: Clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders is summarized and the GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.
Abstract: Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. In this review, we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and by alterations in the subunit composition of the principal receptors (GABA(A) receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that suggests that GABA has a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs (ADs) designed to alter monoaminergic transmission and nonpharmacological therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission has an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Finally, comparatively modest deficits in GABAergic transmission in GABA(A) receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical and neuroendocrine phenotypes, as well as AD response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.

661 citations

Journal ArticleDOI
TL;DR: Transfection of cDNA clones into Drosophila cells indicates that the AP-2 gene product can also activate gene expression in vivo in a DNA template-dependent manner and may be a transcription factor involved in the control of developmentally regulated gene expression.
Abstract: Human AP-2 is a sequence-specific DNA-binding protein that interacts with inducible viral and cellular enhancer elements to stimulate transcription of selected genes. Here, we report the isolation and characterization of a human cDNA clone containing the entire protein-coding region of AP-2. The deduced primary amino acid sequence of AP-2 does not contain a domain resembling any previously identified DNA binding motif. However, an interesting feature of the AP-2 protein is a clustered arrangement of proline and glutamine residues that have been found recently within the activation domains of other transcription factors. Expression of the AP-2 clone in bacteria yields a protein that binds to DNA and activates transcription in vitro in a comparable manner to native human AP-2. Transfection of cDNA clones into Drosophila cells indicates that the AP-2 gene product can also activate gene expression in vivo in a DNA template-dependent manner. Expression of endogenous AP-2 is repressed in a hepatoma cell line and stimulated following retinoic-acid-induced differentiation of a human teratocarcinoma cell line. This indicates that AP-2 may be a transcription factor involved in the control of developmentally regulated gene expression.

536 citations


Cited by
More filters
Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.

23,959 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.

3,678 citations

Journal ArticleDOI
22 Feb 2008-Cell
TL;DR: The factors that regulate proliferation and fate determination of adult neural stem cells are discussed and the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease is addressed.

2,911 citations