scispace - formally typeset
Search or ask a question
Author

Bert Sakmann

Bio: Bert Sakmann is an academic researcher from Max Planck Society. The author has contributed to research in topics: Excitatory postsynaptic potential & Postsynaptic potential. The author has an hindex of 137, co-authored 283 publications receiving 90979 citations. Previous affiliations of Bert Sakmann include University of Freiburg & Technische Universität München.


Papers
More filters
Journal ArticleDOI
Owen P. Hamill1, Alain Marty1, Erwin Neher1, Bert Sakmann1, Fred J. Sigworth1 
TL;DR: The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches.
Abstract: 1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.

17,136 citations

Journal ArticleDOI
10 Jan 1997-Science
TL;DR: In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of post Synaptic action potentials and unitary excitatory postsynaptic potentials was found to induce changes in EPSPs.
Abstract: Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons

3,591 citations

Journal ArticleDOI
01 Mar 1994-Neuron
TL;DR: Recombinant binary NR1-NR2 channels show comparable Ca2+ permeabilities, but marked differences in voltage-dependent Mg2+ block and in offset decay time constants, which provide a basis for NMDA channel heterogeneity in the brain.

3,419 citations

BookDOI
01 Jan 1995
TL;DR: A Practical Guide to Patch Clamping R.H. Penner, C.W. Heinemann, and P. Jonas.
Abstract: A Practical Guide to Patch Clamping R. Penner. Tightseal Wholecell Recording A. Marty, E. Neher. Guide to Data Acquisition and Analysis S.H. Heinemann. Electronic Design of the Patch Clamp F.J. Sigworth. Low Noise Recording K. Benndorf. Voltage Offsets in Patch Clamp Experiments E. Neher. Techniques for Membrane Capacitance Measurements K.D. Gillis. Patch Pipette Recordings from the Soma, Dendrites and Axon of Neurons in Brain Slices B. Sakmann, G. Stuart. Patchclamp and Calcium Imaging in Brain Slices J. Eilers, et al. Fast Application of Agonists to Isolated Membrane Patches P. Jonas. Electrochemical Detection of Secretion from Single Cells R.H. Chow, L. von Ruden. Technical Approaches to Studying Specific Properties of Ion Channels in Plants R. Hedrich. The Giant Membrane Patch D.W. Hilgemann. A Fast Pressureclamp Technique for Studying Mechanogated Channels D.W. McBride, O.P. Hamill. Electrophysiological Recordings from Xenopus oocytes W. Stuhmer, A.B. Parekh. PCR Analysis of Ion Channel Expression in Single Neurons of Brain Slices H. Monyer, P. Jonas. 3 additional articles. Index.

2,592 citations

Journal ArticleDOI
22 May 1992-Science
TL;DR: Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% ientical in sequence, and these are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor sub Units.
Abstract: The N-methyl d-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% ientical in sequence These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1) Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate-and NMDA-activated currents only when they were in heteromeric configurations with NR1 NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution

2,578 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Owen P. Hamill1, Alain Marty1, Erwin Neher1, Bert Sakmann1, Fred J. Sigworth1 
TL;DR: The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches.
Abstract: 1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.

17,136 citations

Journal ArticleDOI
07 Jan 1993-Nature
TL;DR: The best understood form of long-term potentiation is induced by the activation of the N-methyl-d-aspartate receptor complex, which allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and post Synaptic mechanisms to generate a persistent increase in synaptic strength.
Abstract: Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.

11,123 citations