scispace - formally typeset
Search or ask a question
Author

Bertjan Heij

Bio: Bertjan Heij is an academic researcher. The author has contributed to research in topics: Climate change & IPCC Fourth Assessment Report. The author has an hindex of 5, co-authored 6 publications receiving 11277 citations.

Papers
More filters
Journal Article
TL;DR: The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change as mentioned in this paper.
Abstract: A Introduction 1 The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC) The following summary is organised into six sections after this introduction: - Greenhouse gas (GHG) emission trends, - Mitigation in the short and medium term, across different economic sectors (until 2030), - Mitigation in the long-term (beyond 2030), - Policies, measures and instruments to mitigate climate change, - Sustainable development and climate change mitigation, - Gaps in knowledge References to the corresponding chapter sections are indicated at each paragraph in square brackets An explanation of terms, acronyms and chemical symbols used in this SPM can be found in the glossary to the main report

62 citations

30 Apr 2007
TL;DR: The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).
Abstract: A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change, - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications, and find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socioeconomic narrative, and (3) the stringency of the target.
Abstract: This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO 2 emissions of the baseline scenarios range from about 25 GtCO 2 to more than 120 GtCO 2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m 2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).

2,644 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Journal ArticleDOI
TL;DR: The authors argue that societies have inherent capacities to adapt to climate change, but these capacities are bound up in their ability to act collectively, and they argue that this capacity is limited by the nature of the agents of change, states, markets and civil society.
Abstract: The effects of observed and future changes in climate are spatially and socially differentiated. The impacts of future changes will be felt particularly by resource-dependent communities through a multitude of primary and secondary effects cascading through natural and social systems. Given that the world is increasingly faced with risks of climate change that are at the boundaries of human experience3, there is an urgent need to learn from past and present adaptation strategies to understand both the processes by which adaptation takes place and the limitations of the various agents of change – states, markets, and civil society – in these processes. Societies have inherent capacities to adapt to climate change. In this article, I argue that these capacities are bound up in their ability to act collectively.

2,346 citations

Journal ArticleDOI
TL;DR: In this article, the status and distribution of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive was mapped using hybrid supervised and unsupervised digital image classification techniques.
Abstract: Aim Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved.Here,we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive. Methods We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth‐sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map ‘true mangroves’. Results The total area of mangroves in the year 2000 was 137,760 km 2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world’s mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generallyconfinedtothetropicalandsubtropicalregionsandthelargestpercentage of mangroves is found between 5° N and 5° S latitude. Main conclusions We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations.We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created.We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies.

2,261 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the barriers that members of the UK public perceive to engaging with climate change and argue that targeted and tailored information provision should be supported by wider structural change to enable citizens and communities to reduce carbon dependency.
Abstract: This paper reports on the barriers that members of the UKpublic perceive to engaging with climatechange. It draws upon three mixed-method studies, with an emphasis on the qualitative data which offer an in-depth insight into how people make sense of climatechange. The paper defines engagement as an individual's state, comprising three elements: cognitive, affective and behavioural. A number of common barriers emerge from the three studies, which operate broadly at ‘individual’ and ‘social’ levels. These major constraints to individual engagement with climatechange have implications for achieving significant reductions in greenhouse gases in the UK. We argue that targeted and tailored information provision should be supported by wider structural change to enable citizens and communities to reduce their carbon dependency. Policyimplications for effective engagement are discussed.

1,722 citations