scispace - formally typeset
Search or ask a question
Author

Bertrand Thirion

Bio: Bertrand Thirion is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Cluster analysis & Cognition. The author has an hindex of 51, co-authored 311 publications receiving 73839 citations. Previous affiliations of Bertrand Thirion include French Institute for Research in Computer Science and Automation & French Institute of Health and Medical Research.


Papers
More filters
Proceedings ArticleDOI
16 May 2011
TL;DR: A hierarchical structured regularization that encodes the spatial prior information in the regularization process, which makes the overall prediction procedure more robust to inter-subject variability.
Abstract: Inverse inference, or "brain reading", is a recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on pattern recognition tools. By predicting some cognitive variables related to brain activation maps, this approach aims at decoding brain activity. Inverse inference takes into account the multivariate information between voxels and is currently the only way to assess how precisely some cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, as we have far more features than samples, i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed. Among them are univariate feature selection, feature agglomeration and regularization techniques. In this paper, we consider a hierarchical structured regularization. Specifically, the penalization we use is constructed from a tree that is obtained by spatially constrained agglomerative clustering. This approach encodes the spatial prior information in the regularization process, which makes the overall prediction procedure more robust to inter-subject variability. We test our algorithm on a real data acquired for studying the mental representation of objects, and we show that the proposed algorithm yields better prediction accuracy than reference methods.

54 citations

Posted ContentDOI
10 Jul 2016-bioRxiv
TL;DR: The purpose of this work is to elaborate the principles of open and reproducible research for neuroimaging using Magnetic Resonance Imaging (MRI), and then distill these principles to specific research practices.
Abstract: Neuroimaging enables rich noninvasive measurements of human brain activity, but translating such data into neuroscientific insights and clinical applications requires complex analyses and collaboration among a diverse array of researchers. The open science movement is reshaping scientific culture and addressing the challenges of transparency and reproducibility of research. To advance open science in neuroimaging the Organization for Human Brain Mapping created the Committee on Best Practice in Data Analysis and Sharing (COBIDAS), charged with creating a report that collects best practice recommendations from experts and the entire brain imaging community. The purpose of this work is to elaborate the principles of open and reproducible research for neuroimaging using Magnetic Resonance Imaging (MRI), and then distill these principles to specific research practices. Many elements of a study are so varied that practice cannot be prescribed, but for these areas we detail the information that must be reported to fully understand and potentially replicate a study. For other elements of a study, like statistical modelling where specific poor practices can be identified, and the emerging areas of data sharing and reproducibility, we detail both good practice and reporting standards. For each of seven areas of a study we provide tabular listing of over 100 items to help plan, execute, report and share research in the most transparent fashion. Whether for individual scientists, or for editors and reviewers, we hope these guidelines serve as a benchmark, to raise the standards of practice and reporting in neuroimaging using MRI.

53 citations

Journal ArticleDOI
TL;DR: This work demonstrates the benefits of extracting reduced signals on fine-grain atlases for many classic functional data analysis pipelines: stimuli decoding from 12,334 brain responses, standard GLM analysis of fMRI across sessions and individuals, data compression and meta-analysis over more than 15,000 statistical maps.

53 citations

Book ChapterDOI
01 Oct 2012
TL;DR: A novel multimodal integration approach based on sparse Gaussian graphical model for estimating brain connectivity is proposed, Casting functional connectivity estimation as a sparse inverse covariance learning problem, which adjusts the level of sparse penalization on each connection based on its anatomical capacity for functional interactions.
Abstract: Despite the clear potential benefits of combining fMRI and diffusion MRI in learning the neural pathways that underlie brain functions, little methodological progress has been made in this direction. In this paper, we propose a novel multimodal integration approach based on sparse Gaussian graphical model for estimating brain connectivity. Casting functional connectivity estimation as a sparse inverse covariance learning problem, we adapt the level of sparse penalization on each connection based on its anatomical capacity for functional interactions. Functional connections with little anatomical support are thus more heavily penalized. For validation, we showed on real data collected from a cohort of 60 subjects that additionally modeling anatomical capacity significantly increases subject consistency in the detected connection patterns. Moreover, we demonstrated that incorporating a connectivity prior learned with our multimodal connectivity estimation approach improves activation detection.

51 citations

Proceedings Article
19 Jun 2016
TL;DR: This paper proposes a new factorization method that scales gracefully to terabyte-scale datasets, and demonstrates the efficiency of the approach on massive functional Magnetic Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where it obtains significant speed-ups compared to state-of-the art coordinate descent methods.
Abstract: Sparse matrix factorization is a popular tool to obtain interpretable data decompositions, which are also effective to perform data completion or denoising. Its applicability to large datasets has been addressed with online and randomized methods, that reduce the complexity in one of the matrix dimension, but not in both of them. In this paper, we tackle very large matrices in both dimensions. We propose a new factorization method that scales gracefully to terabyte-scale datasets. Those could not be processed by previous algorithms in a reasonable amount of time. We demonstrate the efficiency of our approach on massive functional Magnetic Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where we obtain significant speed-ups compared to state-of-the art coordinate descent methods.

50 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations