scispace - formally typeset
Search or ask a question
Author

Bertrand Thirion

Bio: Bertrand Thirion is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Cluster analysis & Cognition. The author has an hindex of 51, co-authored 311 publications receiving 73839 citations. Previous affiliations of Bertrand Thirion include French Institute for Research in Computer Science and Automation & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The uncovered interplay between the two regions is proposed to reflect a generic binding process that dynamically weights the perceptual evidence supporting the different shape and motion interpretations according to the reliability of the neural activity in these regions.
Abstract: Visual shape and motion information, processed in distinct brain regions, should be combined to elicit a unitary coherent percept of an object in motion. In an fMRI study, we identified brain regions underlying the perceptual binding of motion and shape independently of the features-contrast, motion, and shape-used to design the moving displays. These displays alternately elicited a bound (moving diamond) or an unbound (disconnected moving segments) percept, and were either physically unchanging yet perceptually bistable or physically changing over time. The joint analysis of the blood-oxygen-level-dependent (BOLD) signals recorded during bound or unbound perception with these different stimuli revealed a network comprising the occipital lobe and ventral and dorsal visual regions. Bound percepts correlated with in-phase BOLD increases within the occipital lobe and a ventral area and decreased activity in a dorsal area, while unbound percepts elicited moderate BOLD modulations in these regions. This network was similarly activated by bistable unchanging displays and by displays periodically changing over time. The uncovered interplay between the two regions is proposed to reflect a generic binding process that dynamically weights the perceptual evidence supporting the different shape and motion interpretations according to the reliability of the neural activity in these regions.

25 citations

Posted ContentDOI
25 Apr 2020-bioRxiv
TL;DR: A multidomain brain decoder that automatically learns the spatiotemporal dynamics of brain response within a short time window using a deep learning approach is proposed and provides an automated tool to annotate human brain activity with fine temporal resolution and fine cognitive granularity.
Abstract: A key goal in neuroscience is to understand brain mechanisms of cognitive functions. An emerging approach is “brain decoding”, which consists of inferring a set of experimental conditions performed by a participant, using pattern classification of brain activity. Few works so far have attempted to train a brain decoding model that would generalize across many different cognitive tasks drawn from multiple cognitive domains. To tackle this problem, we proposed a domain-general brain decoder that automatically learns the spatiotemporal dynamics of brain response within a short time window using a deep learning approach. By leveraging our prior knowledge on network organization of human brain cognition, we constructed deep graph convolutional neural networks to annotate cognitive states by first mapping the task-evoked fMRI response onto a brain graph, propagating brain dynamics among interconnected brain regions and functional networks, and generating state-specific representations of recorded brain activity. We evaluated the decoding model on a large population of 1200 participants, under 21 different experimental conditions spanning 6 different cognitive domains, acquired from the Human Connectome Project task-fMRI database. Using a 10s window of fMRI response, the 21 cognitive states were identified with a test accuracy of 89% (chance level 4.8%). Performance remained good when using a 6s window (82%). It was even feasible to decode cognitive states from a single fMRI volume (720ms), with the performance following the shape of the hemodynamic response. Moreover, a saliency map analysis demonstrated that the high decoding performance was driven by the response of biologically meaningful brain regions. Together, we provide an automated tool to annotate human brain activity with fine temporal resolution and fine cognitive granularity. Our model shows potential applications as a reference model for domain adaptation, possibly making contributions in a variety of domains, including neurological and psychiatric disorders.

25 citations

Book ChapterDOI
28 Jun 2013
TL;DR: This work introduces a new group-level brain mapping strategy to differentiate many regions reflecting the variety of brain network configurations observed in the population, using a dictionary-learning formulation that can be solved efficiently with on-line algorithms, scaling to arbitrary large datasets.
Abstract: Functional Magnetic Resonance Imaging (fMRI) studies map the human brain by testing the response of groups of individuals to carefully-crafted and contrasted tasks in order to delineate specialized brain regions and networks. The number of functional networks extracted is limited by the number of subject-level contrasts and does not grow with the cohort. Here, we introduce a new group-level brain mapping strategy to differentiate many regions reflecting the variety of brain network configurations observed in the population. Based on the principle of functional segregation, our approach singles out functionally-specialized brain regions by learning group-level functional profiles on which the response of brain regions can be represented sparsely. We use a dictionary-learning formulation that can be solved efficiently with on-line algorithms, scaling to arbitrary large datasets. Importantly, we model inter-subject correspondence as structure imposed in the estimated functional profiles, integrating a structure-inducing regularization with no additional computational cost. On a large multi-subject study, our approach extracts a large number of brain networks with meaningful functional profiles.

23 citations

Journal ArticleDOI
TL;DR: The approach is a two-stage classification strategy that combines several seed-based connectivity maps to cover a large number of functional networks that identify AD physiopathology, and shows that the transmodal approach increases classification accuracy compared to pure rs-fMRI approaches, without resorting to additional invasive acquisitions.
Abstract: Functional connectivity describes neural activity from resting-state functional magnetic resonance imaging (rs-fMRI). This noninvasive modality is a promising imaging biomark-er of neurodegenerative diseases, such as Alzheimer's disease (AD), where the connectome can be an indicator to assess and to understand the pathology. However, it only provides noisy measurements of brain activity. As a consequence, it has shown fairly limited discrimination power on clinical groups. So far, the reference functional marker of AD is the fluorodeoxyglucose positron emission tomography (FDG-PET). It gives a reliable quantification of metabolic activity, but it is costly and invasive. Here, our goal is to analyze AD populations solely based on rs-fMRI, as functional connectivity is correlated to metabolism. We introduce transmodal learning : leveraging a prior from one modality to improve results of another modality on different subjects. A metabolic prior is learned from an independent FDG-PET dataset to improve functional connectivity-based prediction of AD. The prior acts as a regularization of connectivity learning and improves the estimation of discriminative patterns from distinct rs-fMRI datasets. Our approach is a two-stage classification strategy that combines several seed-based connectivity maps to cover a large number of functional networks that identify AD physiopathology. Experimental results show that our transmodal approach increases classification accuracy compared to pure rs-fMRI approaches, without resorting to additional invasive acquisitions. The method successfully recovers brain regions known to be impacted by the disease.

23 citations

Journal ArticleDOI
TL;DR: A Riemannian approach for connectivity-based brain decoding that provides significantly higher classification accuracy than directly using Pearson's correlation and its regularized variants as features, and a non-parametric scheme that combines bootstrapping and permutation testing for identifying significantly discriminative brain connections from the classifier weights.
Abstract: There is a recent interest in using functional magnetic resonance imaging (fMRI) for decoding more naturalistic, cognitive states, in which subjects perform various tasks in a continuous, self-directed manner. In this setting, the set of brain volumes over the entire task duration is usually taken as a single sample with connectivity estimates, such as Pearson's correlation, employed as features. Since covariance matrices live on the positive semidefinite cone, their elements are inherently inter-related. The assumption of uncorrelated features implicit in most classifier learning algorithms is thus violated. Coupled with the usual small sample sizes, the generalizability of the learned classifiers is limited, and the identification of significant brain connections from the classifier weights is nontrivial. In this paper, we present a Riemannian approach for connectivity-based brain decoding. The core idea is to project the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. For this, we propose a matrix whitening transport, and compare it against parallel transport implemented via the Schild's ladder algorithm. To validate our classification approach, we apply it to fMRI data acquired from twenty four subjects during four continuous, self-driven tasks. We show that our approach provides significantly higher classification accuracy than directly using Pearson's correlation and its regularized variants as features. To facilitate result interpretation, we further propose a non-parametric scheme that combines bootstrapping and permutation testing for identifying significantly discriminative brain connections from the classifier weights. Using this scheme, a number of neuro-anatomically meaningful connections are detected, whereas no significant connections are found with pure permutation testing.

23 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations