scispace - formally typeset
Search or ask a question
Author

Bertrand Thirion

Bio: Bertrand Thirion is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Cluster analysis & Cognition. The author has an hindex of 51, co-authored 311 publications receiving 73839 citations. Previous affiliations of Bertrand Thirion include French Institute for Research in Computer Science and Automation & French Institute of Health and Medical Research.


Papers
More filters
Book ChapterDOI
01 Oct 2012
TL;DR: An extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints works in the log-domain space, so that one can efficiently compute the deformation field of the geometry.
Abstract: We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1+ Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts.

17 citations

Posted ContentDOI
21 Apr 2018-bioRxiv
TL;DR: In systematic data simulations and common medical datasets, it is explored how statistical inference and pattern recognition can agree and diverge and applies the linear model for identifying significant contributing variables and for finding the most predictive variable sets.
Abstract: In the 20th century many advances in biological knowledge and evidence-based medicine were supported by p-values and accompanying methods. In the beginning 21st century, ambitions towards precision medicine put a premium on detailed predictions for single individuals. The shift causes tension between traditional methods used to infer statistically significant group differences and burgeoning machine-learning tools suited to forecast an individual9s future. This comparison applies the linear model for identifying significant contributing variables and for finding the most predictive variable sets. In systematic data simulations and common medical datasets, we explored how statistical inference and pattern recognition can agree and diverge. Across analysis scenarios, even small predictive performances typically coincided with finding underlying significant statistical relationships. However, even statistically strong findings with very low p-values shed little light on their value for achieving accurate prediction in the same dataset. More complete understanding of different ways to define "important" associations is a prerequisite for reproducible research findings that can serve to personalize clinical care.

16 citations

Journal ArticleDOI
TL;DR: The combined combination of pattern-analysis algorithms and extensive data resources allowed identifying coherent clinical constellations in and across ADI-R and ADOS assessments widespread in clinical practice, and suggested that identifying autism subtypes and severity for a given individual may be most manifested in the ADi-R social and communication domains.
Abstract: We simultaneously revisited the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) with a comprehensive data-analytics strategy. Here, the combination of pattern-analysis algorithms and extensive data resources (n = 266 patients aged 7–49 years) allowed identifying coherent clinical constellations in and across ADI-R and ADOS assessments widespread in clinical practice. Our clustering approach revealed low- and high-severity patient groups, as well as a group scoring high only in the ADI-R domains, providing quantitative contours for the widely assumed autism subtypes. Sparse regression approaches uncovered the most clinically predictive questionnaire domains. The social and communication domains of the ADI-R showed convincing performance to predict the patients’ symptom severity. Finally, we explored the relative importance of each of the ADI-R and ADOS domains conditioning on age, sex, and fluid IQ in our sample. The collective results suggest that (i) identifying autism subtypes and severity for a given individual may be most manifested in the ADI-R social and communication domains, (ii) the ADI-R might be a more appropriate tool to accurately capture symptom severity, and (iii) the ADOS domains were more relevant than the ADI-R domains to capture sex differences.

16 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations