scispace - formally typeset
Search or ask a question
Author

Bertrand Thirion

Bio: Bertrand Thirion is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Cluster analysis & Cognition. The author has an hindex of 51, co-authored 311 publications receiving 73839 citations. Previous affiliations of Bertrand Thirion include French Institute for Research in Computer Science and Automation & French Institute of Health and Medical Research.


Papers
More filters
Proceedings ArticleDOI
02 Jul 2012
TL;DR: The output coefficients are used to fit blood oxygen level dependent (BOLD) signal in visual areas using functional magnetic resonance imaging and significant improvement in the prediction accuracy is shown when using the second layer in addition to the first, suggesting biological relevance of the features extracted in layer two or linear combinations thereof.
Abstract: The scattering transform is a hierarchical signal transformation that has been designed to be robust to signal deformations. It can be used to compute representations with invariance or tolerance to any transformation group, such as translations, rotations or scaling. In image analysis, going beyond edge detection, its second layer captures higher order features, providing a fine-grain dissection of the signal. Here we use the output coefficients to fit blood oxygen level dependent (BOLD) signal in visual areas using functional magnetic resonance imaging. Significant improvement in the prediction accuracy is shown when using the second layer in addition to the first, suggesting biological relevance of the features extracted in layer two or linear combinations thereof.

2 citations

TL;DR: Notip is obtained: a powerful, non-parametric method that yields statistically valid estimation of the proportion of activated voxels in data-derived clusters and leverages randomization methods to adapt to data characteristics and obtain tighter false discovery control.
Abstract: Cluster-level inference procedures are widely used for brain mapping. These methods compare the size of clusters obtained by thresholding brain maps to an upper bound under the global null hypothesis, computed using Random Field Theory or permutations. However, the guarantees obtained by this type of inference - i.e. at least one voxel is truly activated in the cluster - are not informative with regards to the strength of the signal therein. There is thus a need for methods to assess the amount of signal within clusters; yet such methods have to take into account that clusters are defined based on the data, which creates circularity in the inference scheme. This has motivated the use of post hoc estimates that allow statistically valid estimation of the proportion of activated voxels in clusters. In the context of fMRI data, the All-Resolutions Inference framework introduced in [24] provides post hoc estimates of the proportion of activated voxels. However, this method relies on parametric threshold families, which results in conservative inference. In this paper, we leverage randomization methods to adapt to data characteristics and obtain tighter false discovery control. We obtain Notip: a powerful, non-parametric method that yields statistically valid estimation of the proportion of activated voxels in data-derived clusters. Numerical experiments demonstrate substantial power gains compared with state-of-the-art methods on 36 fMRI datasets. The conditions under which the proposed method brings benefits are also discussed.

2 citations

Book ChapterDOI
04 Oct 2020
TL;DR: In this article, the authors reframe the lesion-behaviour brain mapping problem using classical causal inference tools and show that, in the absence of additional clinical data and if only one region has an effect on the behavioural scores, suitable multivariate methods are sufficient to address lesionanatomical bias.
Abstract: Lesion-behaviour mapping aims at predicting individual behavioural deficits, given a certain pattern of brain lesions It also brings fundamental insights on brain organization, as lesions can be understood as interventions on normal brain function We focus here on the case of stroke The most standard approach to lesion-behaviour mapping is mass-univariate analysis, but it is inaccurate due to correlations between the different brain regions induced by vascularisation Recently, it has been claimed that multivariate methods are also subject to lesion-anatomical bias, and that a move towards a causal approach is necessary to eliminate that bias In this paper, we reframe the lesion-behaviour brain mapping problem using classical causal inference tools We show that, in the absence of additional clinical data and if only one region has an effect on the behavioural scores, suitable multivariate methods are sufficient to address lesion-anatomical bias This is a commonly encountered situation when working with public datasets, which very often lack general health data We support our claim with a set of simulated experiments using a publicly available lesion imaging dataset, on which we show that adequate multivariate models provide state-of-the art results

2 citations

Proceedings ArticleDOI
22 Jun 2013
TL;DR: In this paper, the second layer scattering descriptors were evaluated with respect to the predictive power of simple contour energy -the first scattering layer, and it was shown that invariant second-layer scattering coefficients better encode voxel activity, but also that well predicted voxels need not necessarily lie in known retinotopic regions.
Abstract: Second layer scattering descriptors are known to provide good classification performance on natural quasi-stationary processes such as visual textures due to their sensitivity to higher order moments and continuity with respect to small deformations. In a functional Magnetic Resonance Imaging (fMRI) experiment we present visual textures to subjects and evaluate the predictive power of these descriptors with respect to the predictive power of simple contour energy - the first scattering layer. We are able to conclude not only that invariant second layer scattering coefficients better encode voxel activity, but also that well predicted voxels need not necessarily lie in known retinotopic regions.

2 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations