scispace - formally typeset
Search or ask a question
Author

Bertrand Thirion

Bio: Bertrand Thirion is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Cluster analysis & Cognition. The author has an hindex of 51, co-authored 311 publications receiving 73839 citations. Previous affiliations of Bertrand Thirion include French Institute for Research in Computer Science and Automation & French Institute of Health and Medical Research.


Papers
More filters
Book ChapterDOI
01 Jan 2015
TL;DR: This chapter proposes a review of the most prominent issues in analysing brain functional Magnetic Resonance data and introduces the domain for readers with no or little knowledge in the field, including some specific advances that are important for application studies in cognitive neurosciences.
Abstract: This chapter proposes a review of the most prominent issues in analysing brain functional Magnetic Resonance data. It introduces the domain for readers with no or little knowledge in the field. The introduction places the context and orients the reader in the many questions put to the data, and summarizes the currently most commonly applied approach. The second section deals with intra subject data analysis, emphasizing hemodynamic response estimation issues. The third section describes current approaches and advances in analysing group data in a standard coordinate system. The last section proposes new spatial models for group analyses. Overall, the chapter gives a brief overview of the field and details some specific advances that are important for application studies in cognitive neurosciences.

1 citations

Posted ContentDOI
19 Apr 2023-bioRxiv
TL;DR: In this paper , the authors present a fully reproducible denoising benchmark for functional magnetic resonance imaging (fMRI) analyses, which is built primarily on the fMRIPrep and Nilearn software packages.
Abstract: Reducing contributions from non-neuronal sources is a crucial step in functional magnetic resonance imaging (fMRI) analyses. Many viable strategies for denoising fMRI are used in the literature, and practitioners rely on denoising benchmarks for guidance in the selection of an appropriate choice for their study. However, fMRI denoising software is an ever-evolving field, and the benchmarks can quickly become obsolete as the techniques or implementations change. In this work, we present a fully reproducible denoising benchmark featuring a range of denoising strategies and evaluation metrics, built primarily on the fMRIPrep and Nilearn software packages. We apply this reproducible benchmark to investigate the robustness of the conclusions across two different datasets and two versions of fMRIPrep. The majority of benchmark results were consistent with prior literature. Scrubbing, a technique which excludes time points with excessive motion, combined with global signal regression, is generally effective at noise removal. Scrubbing however disrupts the continuous sampling of brain images and is incompatible with some statistical analyses, e.g. auto-regressive modeling. In this case, a simple strategy using motion parameters, average activity in select brain compartments, and global signal regression should be preferred. Importantly, we found that certain denoising strategies behave inconsistently across datasets and/or versions of fMRIPrep, or had a different behavior than in previously published benchmarks, especially ICA-AROMA. These results demonstrate that a reproducible denoising benchmark can effectively assess the robustness of conclusions across multiple datasets and software versions. Technologies such as BIDS-App, the Jupyter Book and Neurolibre provided the infrastructure to publish the metadata and report figures. Readers can reproduce the report figures beyond the ones reported in the published manuscript. With the denoising benchmark, we hope to provide useful guidelines for the community, and that our software infrastructure will facilitate continued development as the state-of-the-art advances.

1 citations

Posted Content
TL;DR: This work introduces sparsity in the local neighborhood of each voxel with social-sparsity, a structured shrinkage operator that performs almost as well as total-variation models and better than graph-net, for a fraction of the computational cost.
Abstract: Spatially-sparse predictors are good models for brain decoding: they give accurate predictions and their weight maps are interpretable as they focus on a small number of regions. However, the state of the art, based on total variation or graph-net, is computationally costly. Here we introduce sparsity in the local neighborhood of each voxel with social-sparsity, a structured shrinkage operator. We find that, on brain imaging classification problems, social-sparsity performs almost as well as total-variation models and better than graph-net, for a fraction of the computational cost. It also very clearly outlines predictive regions. We give details of the model and the algorithm.

1 citations

Book ChapterDOI
16 Sep 2018
TL;DR: A model of spatial distributions is used to predict the distribution of specific neurological conditions from text-only reports and shows that voxel-wise parameterization leads to higher likelihood of locations reported in unseen documents and least-deviation cost outperforms least-square.
Abstract: Despite the digital nature of magnetic resonance imaging, the resulting observations are most frequently reported and stored in text documents. There is a trove of information untapped in medical health records, case reports, and medical publications. In this paper, we propose to mine brain medical publications to learn the spatial distribution associated with anatomical terms. The problem is formulated in terms of minimization of a risk on distributions which leads to a least-deviation cost function. An efficient algorithm in the dual then learns the mapping from documents to brain structures. Empirical results using coordinates extracted from the brain-imaging literature show that (i) models must adapt to semantic variation in the terms used to describe a given anatomical structure, (ii) voxel-wise parameterization leads to higher likelihood of locations reported in unseen documents, (iii) least-deviation cost outperforms least-square. As a proof of concept for our method, we use our model of spatial distributions to predict the distribution of specific neurological conditions from text-only reports.

1 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations