scispace - formally typeset
Search or ask a question
Author

Bevan Das

Bio: Bevan Das is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Routing protocol & Wireless network. The author has an hindex of 1, co-authored 1 publications receiving 110 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces a self organizing network structure called a spine and proposes a spine-based routing infrastructure for routing in ad hoc networks and proposes two spine routing algorithms: Optimal Spine Routing (OSR), which uses full and up-to-date knowledge of the network topology, and (b) Partial-knowledge SpineRouting (PSR, which uses partialknowledge of thenetwork topology.
Abstract: An ad hoc network is a multihop wireless network in which mobile hosts communicate without the support of a wired backbone for routing messages. We introduce a self organizing network structure called a spine and propose a spine-based routing infrastructure for routing in ad hoc networks. We propose two spine routing algorithms: (a) Optimal Spine Routing (OSR), which uses full and up-to-date knowledge of the network topology, and (b) Partial-knowledge Spine Routing (PSR), which uses partial knowledge of the network topology. We analyze the two algorithms and identify the optimality-overhead trade-offs involved in these algorithms.

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An ideal wireless fair-scheduling algorithm which provides a packetized implementation of the fluid mode, while assuming full knowledge of the current channel conditions is described, and the worst-case throughput and delay bounds are derived.
Abstract: Fair scheduling of delay and rate-sensitive packet flows over a wireless channel is not addressed effectively by most contemporary wireline fair-scheduling algorithms because of two unique characteristics of wireless media: (1) bursty channel errors and (2) location-dependent channel capacity and errors. Besides, in packet cellular networks, the base station typically performs the task of packet scheduling for both downlink and uplink flows in a cell; however, a base station has only a limited knowledge of the arrival processes of uplink flows. We propose a new model for wireless fair-scheduling based on an adaptation of fluid fair queueing (FFQ) to handle location-dependent error bursts. We describe an ideal wireless fair-scheduling algorithm which provides a packetized implementation of the fluid mode, while assuming full knowledge of the current channel conditions. For this algorithm, we derive the worst-case throughput and delay bounds. Finally, we describe a practical wireless scheduling algorithm which approximates the ideal algorithm. Through simulations, we show that the algorithm achieves the desirable properties identified in the wireless FFQ model.

796 citations

Proceedings ArticleDOI
21 Mar 1999
TL;DR: Preliminary performance evaluation shows that CEDAR is a robust and adaptive QoS routing algorithm that reacts effectively to the dynamics of the network while still approximating link-state performance for stable networks.
Abstract: CEDAR is an algorithm for QoS routing in ad hoc network environments. It has three key components: (a) the establishment and maintenance of a self-organizing routing infrastructure called the core for performing route computations, (b) the propagation of the link-state of stable high-bandwidth links in the core through increase/decrease waves, and (c) a QoS route computation algorithm that is executed at the core nodes using only locally available state. But preliminary performance evaluation shows that CEDAR is a robust and adaptive QoS routing algorithm that reacts effectively to the dynamics of the network while still approximating link-state performance for stable networks.

719 citations

Journal ArticleDOI
TL;DR: The performance evaluations show that CEDAR is a robust and adaptive QoS routing algorithm that reacts quickly and effectively to the dynamics of the network while still approximating the performance of link-state routing for stable networks.
Abstract: We present CEDAR, a core-extraction distributed ad hoc routing algorithm for quality-of-service (QoS) routing in ad hoc network environments, CEDAR has three key components: (a) the establishment and maintenance of a self-organizing routing infrastructure called the core for performing route computations; (b) the propagation of the link-state of high bandwidth and stable links in the core through increase/decrease waves; and (c) a QoS-route computation algorithm that is executed at the core nodes using only locally available state. The performance evaluations show that CEDAR is a robust and adaptive QoS routing algorithm that reacts quickly and effectively to the dynamics of the network while still approximating the performance of link-state routing for stable networks.

716 citations

Proceedings ArticleDOI
23 Jun 2002
TL;DR: In simulations the QoS routing protocol produces higher throughput and lower delay than its best-effort counterpart and an efficient algorithm for calculating the end-to-end bandwidth on a path is developed and used together with the route discovery mechanism of AODV to setup QoS routes.
Abstract: A quality-of-service (QoS) routing protocol is developed for mobile ad hoc networks. It can establish QoS routes with reserved bandwidth on a per flow basis in a network employing TDMA. An efficient algorithm for calculating the end-to-end bandwidth on a path is developed and used together with the route discovery mechanism of AODV to setup QoS routes. In our simulations the QoS routing protocol produces higher throughput and lower delay than its best-effort counterpart.

395 citations

Proceedings ArticleDOI
07 Jan 2002
TL;DR: This paper proposes to combine two known approaches into a single clustering algorithm which considers connectivity as a primary criterion and lower ID as secondary criterion for selecting cluster heads, to minimize the number of clusters.
Abstract: In this paper we describe several new clustering algorithms for nodes in a mobile ad hoc network. We propose to combine two known approaches into a single clustering algorithm which considers connectivity as a primary criterion and lower ID as secondary criterion for selecting cluster heads. The goal is to minimize the number of clusters, which results in dominating sets of smaller sizes (this is important for applications in broadcasting and Bluetooth formation). We also describe algorithms for modifying cluster structure in the presence of topological changes. Next, we generalize the cluster definition so that a cluster contains all nodes that are at a distance of at most k hops from the cluster head. The efficiency of four clustering algorithms (k-lowestID and k-CONID, k=1 and k=2) is tested by measuring the average number of created clusters, the number of border nodes, and the cluster size in random unit graphs. The most interesting experimental result is stability of the ratio of the sum of CHs and border nodes in the set. It was constantly 60-70% for 1-lowestID and 46-56% for 1-ConID, for any value of n (number of nodes) and d (average node degree). Similar conclusions and similar number were obtained for k=2. We also proposed a unified framework for most existing and new clustering algorithms where a properly defined weight at each node is the only difference in the algorithm. Finally, we propose a framework for generating random unit graphs with obstacles.

301 citations