scispace - formally typeset
Search or ask a question
Author

Bharat S. Chaudhari

Bio: Bharat S. Chaudhari is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: LPWAN & Network on a chip. The author has an hindex of 9, co-authored 49 publications receiving 234 citations. Previous affiliations of Bharat S. Chaudhari include Maharashtra Institute of Technology & International Institute of Information Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The major proprietary and standards-based LPWAN technology solutions available in the marketplace are presented and these include Sigfox, LoRaWAN, Narrowband IoT, and long term evolution (LTE)-M, among others.
Abstract: Low power wide area network (LPWAN) is a promising solution for long range and low power Internet of Things (IoT) and machine to machine (M2M) communication applications. This paper focuses on defining a systematic and powerful approach of identifying the key characteristics of such applications, translating them into explicit requirements, and then deriving the associated design considerations. LPWANs are resource-constrained networks and are primarily characterized by long battery life operation, extended coverage, high capacity, and low device and deployment costs. These characteristics translate into a key set of requirements including M2M traffic management, massive capacity, energy efficiency, low power operations, extended coverage, security, and interworking. The set of corresponding design considerations is identified in terms of two categories, desired or expected ones and enhanced ones, which reflect the wide range of characteristics associated with LPWAN-based applications. Prominent design constructs include admission and user traffic management, interference management, energy saving modes of operation, lightweight media access control (MAC) protocols, accurate location identification, security coverage techniques, and flexible software re-configurability. Topological and architectural options for interconnecting LPWAN entities are discussed. The major proprietary and standards-based LPWAN technology solutions available in the marketplace are presented. These include Sigfox, LoRaWAN, Narrowband IoT (NB-IoT), and long term evolution (LTE)-M, among others. The relevance of upcoming cellular 5G technology and its complementary relationship with LPWAN technology are also discussed.

123 citations

Book ChapterDOI
01 Jan 2020
TL;DR: This chapter will provide details of different applications related to NB-IoT such as smart grid, smart cities, and smart industry, and security issues and other deployment considerations will be explored.
Abstract: Narrowband-Internet of Things (NB-IoT) is a standard-based low-power wide-area network (LPWAN) technology developed to connect a wide range of new IoT devices and services. The NB-IoT will improve the power consumption of user devices, system capacity, and spectrum efficiency. It is able to be loaded by major mobile equipment and module manufacturers, and indeed it will be existing to be adaptable with any cellular mobile network’s generations. It also benefits from all the security and privacy features of mobile networks. In this chapter, fundamental key aspects of NB-IoT are investigated and the features of NB-IoT and technical properties are proposed in addition to the theoretical concepts. A detailed overview of the current NB-IoT-related technologies such as Long-Term Evolution for Machines (LTE-M), Third Generation Partnership Project (3GPP), enhanced Machine Type Communication (eMTC) and ultralow power technologies is discussed. This chapter will also provide details of different applications related to NB-IoT such as smart grid, smart cities, and smart industry. Security issues and other deployment considerations will be explored.

30 citations

Journal ArticleDOI
TL;DR: A novel multi-objective grey wolf optimization technique for node localization with an objective to minimize a localization error is proposed for wireless sensors-based parking systems.
Abstract: Due to rapid growth in urban population and advances in the automotive industry, the number of vehicles is increasing exponentially, posing the parking challenges. Automated parking systems provide efficient and optimal parking solution so that the drivers can have hassle free and quick parking. One of the demanding requirements is the design of smart parking systems, not only for comfort but also of economic interest. With the advancements in the Internet of Things (IoT), wireless sensors-based parking systems are the promising solutions for the deployment. Optimal positioning of IoT enabled wireless sensor nodes in the parking area is a crucial factor for the efficient parking model with the lower cost. In this paper, we propose a novel multi-objective grey wolf optimization technique for node localization with an objective to minimize a localization error. Two objective functions are considered for distance and geometric topology constraints. The proposed algorithm is compared with other node localization algorithms. Our algorithm outperforms the existing algorithms. The result shows that localization error is reduced up to 17% in comparison with the other algorithms. The proposed algorithm is computationally efficient due to the choice of fast converging parameters.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors classify and discuss various state-of-the-art techniques proposed for IoT node localization in detail, including different approaches such as centralized, distributed, iterative, ranged based, range free, device-based, device free and their subtypes.
Abstract: With exponential growth in the deployment of Internet of Things (IoT) devices, many new innovative and real-life applications are being developed. IoT supports such applications with the help of resource-constrained fixed as well as mobile nodes. These nodes can be placed in anything from vehicles to the human body to smart homes to smart factories. Mobility of the nodes enhances the network coverage and connectivity. One of the crucial requirements in IoT systems is the accurate and fast localization of its nodes with high energy efficiency and low cost. The localization process has several challenges. These challenges keep changing depending on the location and movement of nodes such as outdoor, indoor, with or without obstacles and so on. The performance of localization techniques greatly depends on the scenarios and conditions from which the nodes are traversing. Precise localization of nodes is very much required in many unique applications. Although several localization techniques and algorithms are available, there are still many challenges for the precise and efficient localization of the nodes. This paper classifies and discusses various state-of-the-art techniques proposed for IoT node localization in detail. It includes the different approaches such as centralized, distributed, iterative, ranged based, range free, device-based, device-free and their subtypes. Furthermore, the different performance metrics that can be used for localization, comparison of the different techniques, some prominent applications in smart cities and future directions are also covered.

26 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear numerical problems, which is based on hybrid optimization using quantum PSO, and the cross operator is employed to promote information interchange among individuals in a group, and exceptional genes can be continued moderately.
Abstract: An optimized design with real-time and multiple realistic constraints in complex engineering systems is a crucial challenge for designers. In the non-uniform Internet of Things (IoT) node deployments, the approximation accuracy is directly affected by the parameters like node density and coverage. We propose a novel enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear numerical problems. The algorithm is based on hybrid optimization using quantum PSO. Differential evolution operator is used to circumvent group moves in small ranges and falling into the local optima and improves global searchability. The cross operator is employed to promote information interchange among individuals in a group, and exceptional genes can be continued moderately, accompanying the evolutionary process’s continuance and adding proactive and reactive features. The proposed algorithm’s performance is verified as well as compared with the other algorithms through 30 classic benchmark functions in IEEE CEC2017, with a basic PSO algorithm and improved versions. The results show the smaller values of fitness function and computational efficiency for the benchmark functions of IEEE CEC2019. The proposed algorithm outperforms the existing optimization algorithms and different PSO versions, and has a high precision and faster convergence speed. The average location error is substantially reduced for the smart parking IoT application.

25 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
TL;DR: The current state of art of the functional pillars of IoT and its emerging applications are presented to motivate academicians and researches to develop real-time, energy-efficient, scalable, reliable, and secure IoT applications.
Abstract: Internet of Things (IoT) is an integration of the Sensor, Embedded, Computing, and Communication technologies. The purpose of the IoT is to provide seamless services to anything, anytime at any place. IoT technologies play a crucial role everywhere, which brings the fourth revolution of disruptive technologies after the internet and Information and Communication Technology (ICT). The Research & Development community has predicted that the impact of IoT will be more than the internet and ICT on society, which improves the well-being of society and industries. Addressing the predominant system-level design aspects like energy efficiency, robustness, scalability, interoperability, and security issues result in the use of a potential IoT system. This paper presents the current state of art of the functional pillars of IoT and its emerging applications to motivate academicians and researches to develop real-time, energy-efficient, scalable, reliable, and secure IoT applications. This paper summarizes the architecture of IoT, with the contemporary status of IoT architectures. Highlights of the IoT system-level issues to develop more advanced real-time IoT applications have been discussed. Millions of devices exchange information using different communication standards, and interoperability between them is a significant issue. This paper provides the current status of the communication standards and application layer protocols used in IoT with the detailed analysis. The computing paradigms like Cloud, Cloudlet, Fog, and Edge computing facilitate IoT with various services like data offloading, resource and device management, etc. In this paper, an exhaustive analysis of Edge Computing in IoT with different edge computing architectures and existing status are deliberated. The widespread adoption of IoT in society has resulted in privacy and security issues. This paper emphasizes on analyzing the security challenges, privacy and security threats, conventional mitigation techniques, and further scope for IoT security. The features like fewer memory footprints, scheduling, real-time task execution, fewer interrupt, and thread switching latency of Real-Time Operating Systems (RTOS) enables the development of time critical IoT applications. Also, this review offers the analysis of the RTOS’s suitable for IoT with the current status and networking stack. Finally, open research issues in IoT system development are discussed.

90 citations

Journal ArticleDOI
TL;DR: A three-dimensional direct-write lithography system capable of writing deeply buried, localized index structures into diffusion-mediated photopolymer, allowing for greater flexibility in the writing media and the ability to use low power, inexpensive, continuous-wave lasers.
Abstract: We demonstrate a three-dimensional direct-write lithography system capable of writing deeply buried, localized index structures into diffusion-mediated photopolymer. The system is similar to that used for femtosecond writing in glass, but has a number of advantages including greater flexibility in the writing media and the ability to use low power, inexpensive, continuous-wave lasers. This system writes index structures both parallel and perpendicular to the writing beam in different types of photopolymers, providing control over the feature size and shape. We demonstrate that this system can be used to create single-mode waveguides that are deeply embedded in the photopolymer medium.

90 citations

Journal ArticleDOI
TL;DR: The study suggests that the essential factors of design need to be considered to conquer the critical research gaps of the existing LPWAN cognitive-enabled IIoT, and a cognitive low energy architecture is brought to ensure efficient and stable communications in a heterogeneous IIeT.
Abstract: The Industrial Internet of things (IIoT) helps several applications that require power control and low cost to achieve long life. The progress of IIoT communications, mainly based on cognitive radio (CR), has been guided to the robust network connectivity. The low power communication is achieved for IIoT sensors applying the Low Power Wide Area Network (LPWAN) with the Sigfox, NBIoT, and LoRaWAN technologies. This paper aims to review the various technologies and protocols for industrial IoT applications. A depth of assessment has been achieved by comparing various technologies considering the key terms such as frequency, data rate, power, coverage, mobility, costing, and QoS. This paper provides an assessment of 64 articles published on electricity control problems of IIoT between 2007 and 2020. That prepares a qualitative technique of answering the research questions (RQ): RQ1: “How cognitive radio engage with the industrial IoT?”, RQ2: “What are the Proposed architectures that Support Cognitive Radio LPWAN based IIOT?”, and RQ3: What key success factors need to comply for reliable CIIoT support in the industry?”. With the systematic literature assessment approach, the effects displayed on the cognitive radio in LPWAN can significantly revolute the commercial IIoT. Thus, researchers are more focused in this regard. The study suggests that the essential factors of design need to be considered to conquer the critical research gaps of the existing LPWAN cognitive-enabled IIoT. A cognitive low energy architecture is brought to ensure efficient and stable communications in a heterogeneous IIoT. It will protect the network layer from offering the customers an efficient platform to rent AI, and various LPWAN technology were explored and investigated.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review with analytical modeling for offloading mobile edge-computing decisions based on machine learning and Deep Reinforcement Learning (DRL) approaches for the Internet of Vehicles (IoV) is conducted.
Abstract: Recently, interest in Internet of Vehicles’ (IoV) technologies has significantly emerged due to the substantial development in the smart automobile industries. Internet of Vehicles’ technology enables vehicles to communicate with public networks and interact with the surrounding environment. It also allows vehicles to exchange and collect information about other vehicles and roads. IoV is introduced to enhance road users’ experience by reducing road congestion, improving traffic management, and ensuring the road safety. The promised applications of smart vehicles and IoV systems face many challenges, such as big data collection in IoV and distribution to attractive vehicles and humans. Another challenge is achieving fast and efficient communication between many different vehicles and smart devices called Vehicle-to-Everything (V2X). One of the vital questions that the researchers need to address is how to effectively handle the privacy of large groups of data and vehicles in IoV systems. Artificial Intelligence technology offers many smart solutions that may help IoV networks address all these questions and issues. Machine learning (ML) is one of the highest efficient AI tools that have been extensively used to resolve all mentioned problematic issues. For example, ML can be used to avoid road accidents by analyzing the driving behavior and environment by sensing data of the surrounding environment. Machine learning mechanisms are characterized by the time change and are critical to channel modeling in-vehicle network scenarios. This paper aims to provide theoretical foundations for machine learning and the leading models and algorithms to resolve IoV applications’ challenges. This paper has conducted a critical review with analytical modeling for offloading mobile edge-computing decisions based on machine learning and Deep Reinforcement Learning (DRL) approaches for the Internet of Vehicles (IoV). The paper has assumed a Secure IoV edge-computing offloading model with various data processing and traffic flow. The proposed analytical model considers the Markov decision process (MDP) and ML in offloading the decision process of different task flows of the IoV network control cycle. In the paper, we focused on buffer and energy aware in ML-enabled Quality of Experience (QoE) optimization, where many recent related research and methods were analyzed, compared, and discussed. The IoV edge computing and fog-based identity authentication and security mechanism were presented as well. Finally, future directions and potential solutions for secure ML IoV and V2X were highlighted.

70 citations