scispace - formally typeset
Search or ask a question
Author

Bharti Choudhary

Bio: Bharti Choudhary is an academic researcher from Guru Gobind Singh Indraprastha University. The author has contributed to research in topics: Chitinase & Medicine. The author has an hindex of 6, co-authored 7 publications receiving 159 citations. Previous affiliations of Bharti Choudhary include Pandit Ravishankar Shukla University.

Papers
More filters
Journal ArticleDOI
TL;DR: This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of Chitin as well as in implementing chit inases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.
Abstract: Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.

96 citations

Journal ArticleDOI
TL;DR: The traceability of foodstuffs has been investigated in the context of the food trade as mentioned in this paper, which requires precise and exact information about the origin, methods of production, transformation technologies, authentication, and traceability.
Abstract: Globalization of the food trade requires precise and exact information about the origin, methods of production, transformation technologies, authentication, and the traceability of foodstuffs. New ...

28 citations

Journal ArticleDOI
TL;DR: Biocontrol traits like co-production of cell wall lytic enzymes and antifungal secondary metabolites including siderophores by Streptomyces sp.
Abstract: An actinomycetes isolate of Loktak Lake soil, designated as MT7, was characterized and identified as Streptomyces sp. based on fatty acid methyl ester and 16S ribosomal RNA gene analysis. Streptomyces sp. MT7 showed strong and broad spectrum antagonism towards seven out of eight tested wood-rotting fungi. Strain MT7 secretes three vital fungal cell wall lytic enzymes, i.e. chitinase, β-1,3-glucanase, and protease, and siderophores. Extracellularly produced mycolytic enzymes lost their antifungal activity completely after treatment with proteinase K and heat, indicating that the tested antifungal metabolites are heat-sensitive and proteinaceous in nature. Extracellular fluid (ECF) and its organic solvent extract also exhibited potential antagonism towards the tested wood-rotting fungi. Antifungal metabolites were characterized as polyene in nature. Biocontrol traits like co-production of cell wall lytic enzymes and antifungal secondary metabolites including siderophores by Streptomyces sp. MT7 suggests that it could be employed as a potential biocontrol agent against wood-rotting basidiomycetes.

26 citations

Journal ArticleDOI
TL;DR: Cell‐free culture filtrate exhibited a broad range of antifungal activity against both white rot and brown rot fungi, and the inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antIfungal metabolites are heat labile and proteinaceous in nature.
Abstract: Extracellular mycolytic enzymes produced under submerged fermentation by the fungal antagonist Streptomyces violaceusniger MTCC 3959 were characterized. This streptomycete produced higher amounts of extracellular chitinase and protease during late exponential phase, whereas β-1,3-glucanase production was at peak in mid-stationary phase. Cell-free culture filtrate (CCF) exhibited a broad range of antifungal activity against both white rot and brown rot fungi. The inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antifungal metabolites are heat labile and proteinaceous in nature. Optimum pH and temperature for enzyme activity were: 9.0 and 60 °C for chitinase; 6.0 and 60 °C for β-1,3-glucanase; and 9.0 and 70 °C for protease. Mycolytic enzymes were moderately thermostable, and had a wide pH stability range extending from pH 5.0 to 10.0. The zymogram analysis of CCF revealed five chitinase isoenzymes with an apparent molecular weight of 20.8, 33.3, 45.6, 67.4, and 114.8 kDa, one β-1,3-glucanase appeared as a single band of ∼131.8 kDa and four protease isoenzymes with approximate molecular weights of 22.8, 62.52, 74.64, and 120.5 kDa. S. violaceusniger MTCC 3959 produced mycolytic enzymes that can be effectively used for suppression of phytopathogenic basidiomycetes. It has the potential to be an effective biofungicide.

25 citations

Journal ArticleDOI
TL;DR: To the best of the authors' knowledge, this is the first report on extracellular production of fungal cell‐wall lytic enzymes and antifungal metabolites by bioactive S. exfoliatus MT9 under submerged fermentation.
Abstract: An antifungal actinomycete strain MT9 was isolated from Loktak Lake, Manipur, India and its cultural characteristics, fatty acid methyl ester, 16S rRNA gene analysis suggests that strain MT9 is identical to Streptomyces exfoliatus. Strain MT9 displayed strong and broad-spectrum antagonism towards several fruit-rotting fungi by mycelial growth suppression. Crude fungal cell-wall lytic enzymes, i.e., chitinase, β-1,3-glucanase, and protease produced by S. exfoliatus MT9 were optimally active at pH 8.0 and 50 °C, pH 5.0 and 60 °C, pH 9.0 and 70 °C, respectively. All three mycolytic enzymes had good stability over a wide pH range of 5.0-10.0, with protease being more thermostable than both chitinase and β-1,3-glucanase. Interestingly zymogram analysis revealed that S. exfoliatus MT9 secretes six distinct chitinase isoenzymes with approximate molecular weights of 9.42, 13.93, 27.87, 36.43, 54.95, 103.27 kDa, six active protease isoenzymes with apparent molecular weights of 12.45, 30.20, 37.45, 46.32, 52.46, 131.46 kDa, and an active band of 119.39 kDa as β-1,3-glucanase enzyme. Extracellular fluid and its organic solvent extracts also exhibited inhibitory activity to various fruit-rotting fungi. The MIC value of n-butanol extract was 2-25 µg/ml against tested fruit-rotting fungi. Antifungal secondary metabolite(s) was found to be polyene in nature. To the best of our knowledge, this is the first report on extracellular production of fungal cell-wall lytic enzymes and antifungal metabolites by bioactive S. exfoliatus MT9 under submerged fermentation.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi highlights Streptomyces spp..-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens.
Abstract: There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens.

349 citations

Journal ArticleDOI
TL;DR: Yeasts represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist, but the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast- based biocOntrol products is highlighted.
Abstract: Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., competition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist.

187 citations

Journal ArticleDOI
TL;DR: A review on properties and applications of chitinases starting from bacteria, followed by fungi, insects, plants, and vertebrates is presented in this paper, where a rational approach for improved catalytic activity for cost-effective field applications has also been explored.
Abstract: Chitin is the second most plenteous polysaccharide in nature after cellulose, present in cell walls of several fungi, exoskeletons of insects, and crustacean shells. Chitin does not accumulate in the environment due to presence of bacterial chitinases, despite its abundance. These enzymes are able to degrade chitin present in the cell walls of fungi as well as the exoskeletons of insect. They have shown being the potential agents for biological control of the plant diseases caused by various pathogenic fungi and insect pests and thus can be used as an alternative to chemical pesticides. There has been steady increase in demand of chitin derivatives, obtained by action of chitinases on chitin polymer for various industrial, clinical, and pharmaceutical purposes. Hence, this review focuses on properties and applications of chitinases starting from bacteria, followed by fungi, insects, plants, and vertebrates. Designing of chitinase by applying directed laboratory evolution and rational approaches for improved catalytic activity for cost-effective field applications has also been explored.

143 citations

Journal ArticleDOI
TL;DR: It is concluded that T. asperellum CCTCC-RW0014 was the highly potential strain to control the FOC, providing scope for a further study on the mechanism of interaction between Trichoderma derived compounds and host plants.

135 citations

Journal ArticleDOI
23 Sep 2019
TL;DR: In this article, the authors discuss the use of antifungal agents in agriculture worldwide, the need to develop new ant-agents, and improvement of regulations regarding ant-drug use.
Abstract: Fungal diseases have been underestimated worldwide but constitute a substantial threat to several plant and animal species as well as to public health. The increase in the global population has entailed an increase in the demand for agriculture in recent decades. Accordingly, there has been worldwide pressure to find means to improve the quality and productivity of agricultural crops. Antifungal agents have been widely used as an alternative for managing fungal diseases affecting several crops. However, the unregulated use of antifungals can jeopardize public health. Application of fungicides in agriculture should be under strict regulation to ensure the toxicological safety of commercialized foods. This review discusses the use of antifungals in agriculture worldwide, the need to develop new antifungals, and improvement of regulations regarding antifungal use.

129 citations