scispace - formally typeset
Search or ask a question
Author

Bhavya Gupta

Bio: Bhavya Gupta is an academic researcher from Shiv Nadar University. The author has contributed to research in topics: Dispersion (water waves) & Traveling-wave tube. The author has co-authored 1 publications.

Papers
More filters
Proceedings ArticleDOI
07 Mar 2019
TL;DR: In this article, the dispersion equation for a planar traveling wave tube with anisotropic conducting open helix structure is derived and the exact solution of a homogenous boundary value problem for Maxwell's equations is derived.
Abstract: The dispersion equation for a planar traveling wave tube with anisotropically conducting open helix structure is derived. Using, the accurate boundary conditions along all the sides of the planar TWT and along the winding direction of the TWT using indicator function, the exact solution of a homogenous boundary value problem for Maxwell's equations is derived. A total number of six different complex constants are derived from a set of six boundary conditions for the proposed cold wave analysis. The presented theoretical analysis will be used in the design of the planar travelling wave tube amplifier (TWTA).

2 citations


Cited by
More filters
Proceedings ArticleDOI
25 Apr 2023
Abstract: A rectangular open tape helix is analysed for its dispersion characteristics by deriving the dispersion equations that restrict the fields within the tape helix region by incorporating a confinement function. The dispersion equations are derived by applying the accurate boundary conditions to one-quarter of the structure in axial and transverse directions owing to the symmetricity of the rectangular helical waveguide. The dispersion characteristics are numerically computed from an infinite number of simultaneous equations. The computed characteristics is compared with the theoretical model of sheath helix consisting of only the fundamental harmonics. Plotted dispersion characteristics reveals the potential usability of such devices as compact traveling wave tubes by miniaturization and can be printed.
Proceedings ArticleDOI
25 Apr 2023
TL;DR: A rectangular open tape helix is analyzed in this article for its dispersion characteristics by deriving the dispersion equations that restrict the fields within the tape-helix region by incorporating a confinement function.
Abstract: A rectangular open tape helix is analysed for its dispersion characteristics by deriving the dispersion equations that restrict the fields within the tape helix region by incorporating a confinement function. The dispersion equations are derived by applying the accurate boundary conditions to one-quarter of the structure in axial and transverse directions owing to the symmetricity of the rectangular helical waveguide. The dispersion characteristics are numerically computed from an infinite number of simultaneous equations. The computed characteristics is compared with the theoretical model of sheath helix consisting of only the fundamental harmonics. Plotted dispersion characteristics reveals the potential usability of such devices as compact traveling wave tubes by miniaturization and can be printed.