scispace - formally typeset
Search or ask a question
Author

Bihui Xu

Other affiliations: John Radcliffe Hospital
Bio: Bihui Xu is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Interferon & Immune checkpoint. The author has an hindex of 6, co-authored 8 publications receiving 2736 citations. Previous affiliations of Bihui Xu include John Radcliffe Hospital.

Papers
More filters
Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: Major tumour regressions are reported in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody and radiation and reproduced this effect in mouse models, showing that PD-L1 on melanoma cells allows tumours to escape anti- NCTLA4-based therapy, and the combination of radiation, anti- CTLA4 and anti-PD-L 1 promotes response and immunity through distinct mechanisms.
Abstract: Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.

1,872 citations

Journal ArticleDOI
01 Dec 2016-Cell
TL;DR: It is demonstrated that prolonged interferon signaling orchestrates PDL1-dependent and PDL 1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4, and biomarkers for interferons-driven resistance associate with clinical progression after anti-PD1 therapy.

749 citations

Journal ArticleDOI
23 Oct 2014-Cell
TL;DR: Primary human and/or mouse BrCa analysis support the role of antiviral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors.

632 citations

Journal ArticleDOI
08 Aug 2019-Cell
TL;DR: It is shown that while inhibiting tumor IFNG signaling decreases interferon-stimulated genes in cancer cells, it increases ISGs in immune cells by enhancing IFNG produced by exhausted T cells (TEX).

252 citations

Journal ArticleDOI
TL;DR: DENDRO is proposed, an analysis method for scRNA-seq data that clusters single cells into genetically distinct subclones and reconstructs the phylogenetic tree relating the subClones and delineates the role of neoantigens in treatment response.
Abstract: Although scRNA-seq is now ubiquitously adopted in studies of intratumor heterogeneity, detection of somatic mutations and inference of clonal membership from scRNA-seq is currently unreliable. We propose DENDRO, an analysis method for scRNA-seq data that clusters single cells into genetically distinct subclones and reconstructs the phylogenetic tree relating the subclones. DENDRO utilizes transcribed point mutations and accounts for technical noise and expression stochasticity. We benchmark DENDRO and demonstrate its application on simulation data and real data from three cancer types. In particular, on a mouse melanoma model in response to immunotherapy, DENDRO delineates the role of neoantigens in treatment response.

35 citations


Cited by
More filters
Journal ArticleDOI
07 Feb 2020-Science
TL;DR: The intrinsic properties of exosomes in regulating complex intracellular pathways has advanced their potential utility in the therapeutic control of many diseases, including neurodegenerative conditions and cancer.
Abstract: The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.

3,715 citations

Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.

3,131 citations

Journal ArticleDOI
22 Feb 2018-Nature
TL;DR: Tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent were examined and major determinants of clinical outcome were identified and suggested that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.
Abstract: Therapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.

2,808 citations

Journal ArticleDOI
10 Mar 2016-Cell
TL;DR: This Review focuses on the context of tumor cells and their microenvironment, but similar results and challenges apply to all patho/physiological systems in which EV-mediated communication is proposed to take place.

2,293 citations

Journal ArticleDOI
TL;DR: An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.
Abstract: Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9, demonstrating utility for immunotherapy research.

2,185 citations