scispace - formally typeset
Search or ask a question
Author

Bijendra Kumar Singh

Bio: Bijendra Kumar Singh is an academic researcher from Banaras Hindu University. The author has contributed to research in topics: Aspergillus flavus & Food spoilage. The author has an hindex of 3, co-authored 8 publications receiving 21 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the preservative potency of anethole-based chitosan nanoemulsion (Ant-eCsNe) was evaluated to control deterioration of stored maize samples from fungal infestation, aflatoxin B1 (AFB1) contamination and lipid oxidation.
Abstract: Aflatoxins (AFs) are the most frequent contaminants of maize and maize-based products, and its consumption can cause severe adverse effects to humans and animals. The efficacy of essential oils (EOs) and their bioactive compounds as potential antifungal agents has been well documented against food-borne fungi. This study evaluates the preservative potency of anethole-based chitosan nanoemulsion (Ant-eCsNe) to control deterioration of stored maize samples from fungal infestation, aflatoxin B1 (AFB1) contamination and lipid oxidation. Release study indicated a relatively good sustainable release profile for the encapsulated anethole after 10 days. The Ant-eCsNe showed improved efficacy against A. flavus (AF-LHP-VS8) and other common food-borne moulds and inhibited growth and AFB1 biosynthesis at 0.8 and 0.4 μL/mL, respectively. Ant-eCsNe caused concentration-dependent inhibition of ergosterol content and increased efflux of cellular ions (Ca+2, Mg+2 and K+) and 260 and 280 nm absorbing materials, suggesting damage of fungal plasma membrane. Inhibition of methylglyoxal in fungal cells treated with Ant-eCsNe signifies its novel antiaflatoxigenic mechanism of action. Ant-eCsNe exhibited strong in vitro DPPH• and ABTS+• scavenging activity with IC50 value 89.36 and 45.05 μL/mL, respectively, and inhibited lipid oxidation in stored maize samples. Further, Ant-eCsNe exhibited reasonably strong efficacy in preserving maize samples from fungal and AFB1 contamination during in vivo investigations and did not change the sensory attributes as well. Overall results revealed that Ant-eCsNe holds good potential to be applied as food preservative to reduce fungal and aflatoxin contamination causing deterioration of stored maize.

37 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the application of essential oils and their nano-formulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities.
Abstract: Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.

36 citations

Journal ArticleDOI
TL;DR: In this article, the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), storage fungi, AFB1, and free radical-mediated deterioration of stored spices was investigated.
Abstract: Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), storage fungi, AFB1, and free radical-mediated deterioration of stored spices. GC–MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR, and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB1 biosynthesis at 1.25 μL/mL and 1.0 μL/mL, respectively in comparison to unencapsulated HAEO (1.75 μL/mL and 1.25 μL/mL, respectively). CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca+2, Mg+2, and K+) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells illustrated the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne exhibited superior antioxidant efficacy (IC50 (DPPH) = 4.5 μL/mL) over unencapsulated HAEO (IC50 (DPPH) = 15.9 μL/mL) and phenolic content. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting fungal infestation, AFB1 contamination, lipid peroxidation, and mineral loss with acceptable sensorial profile. Moreover, broad safety paradigm (LD50 value = 7150.11 mg/kg) of CS-HAEO-Ne also suggests its application as novel green preservative to enhance shelf life of stored spices.

8 citations

Journal ArticleDOI
TL;DR: This article deals with some major encapsulation techniques and their role in enhancing bio-efficacy of EOs being used as botanical preservatives.
Abstract: 175 DOI: http://dx.doi.org/10.37398/JSR.2020.640125 Abstract: Essential oils (EOs) and their bioactive components are safer and novel formulations used as green preservative in food industries but their rapid volatility and high instability in varying environmental conditions pose a major hurdle for large scale practical application. Recently, different encapsulation technologies have been recommended as the booster for improvement of EOs bio-efficacy. The present article deals with some major encapsulation techniques and their role in enhancing bio-efficacy of EOs being used as botanical preservatives.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the efficiency of chemically characterised Carum carvi essential oil (CcEO) against aflatoxin B1 producing strain of Aspergillus flavus (AF-LHP-WS-4) causing deterioration of herbal raw materials (HRM).

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system.

55 citations

Journal ArticleDOI
TL;DR: This review analyzes some of the most recent advances on the use of emulsion-like dispersions as a tool for controlling insect pest and pathogens.

47 citations

Journal ArticleDOI
TL;DR: In this article, the authors used cumin essential oil (CEO) to prevent A. flavus contamination on peanuts and found that it has great inhibitory activity to both the growth of Aspergillus flavus and aflatoxin B1 (AFB1) biosynthesis.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the application of essential oils and their nano-formulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities.
Abstract: Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.

36 citations

Journal ArticleDOI
TL;DR: Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents.
Abstract: Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.

32 citations