scispace - formally typeset
Search or ask a question
Author

Billur Barshan

Bio: Billur Barshan is an academic researcher from Bilkent University. The author has contributed to research in topics: Sonar & Mobile robot. The author has an hindex of 27, co-authored 132 publications receiving 4630 citations. Previous affiliations of Billur Barshan include Yale University & University of Oxford.


Papers
More filters
Journal ArticleDOI
01 Jun 1995
TL;DR: A low-cost solid-state inertial navigation system for mobile robotics applications is described and error models for the inertial sensors are generated and included in an extended Kalman filter for estimating the position and orientation of a moving robot vehicle.
Abstract: A low-cost solid-state inertial navigation system (INS) for mobile robotics applications is described. Error models for the inertial sensors are generated and included in an extended Kalman filter (EKF) for estimating the position and orientation of a moving robot vehicle. Two different solid-state gyroscopes have been evaluated for estimating the orientation of the robot. Performance of the gyroscopes with error models is compared to the performance when the error models are excluded from the system. Similar error models have been developed for each axis of a solid-state triaxial accelerometer and for a conducting-bubble tilt sensor which may also be used as a low-cost accelerometer. An integrated inertial platform consisting of three gyroscopes, a triaxial accelerometer and two tilt sensors is described. >

734 citations

Journal ArticleDOI
TL;DR: Bayesian decision making (BDM) results in the highest correct classification rate with relatively small computational cost, and a performance comparison of the classification techniques is provided in terms of their correct differentiation rates, confusion matrices, and computational cost.

513 citations

Journal ArticleDOI
TL;DR: Convolution, filtering, and multiplexing of signals in fractional domains are discussed, revealing that under certain conditions one can improve on the special cases of these operations in the conventional space and frequency domains.
Abstract: A concise introduction to the concept of fractional Fourier transforms is followed by a discussion of their relation to chirp and wavelet transforms. The notion of fractional Fourier domains is developed in conjunction with the Wigner distribution of a signal. Convolution, filtering, and multiplexing of signals in fractional domains are discussed, revealing that under certain conditions one can improve on the special cases of these operations in the conventional space and frequency domains. Because of the ease of performing the fractional Fourier transform optically, these operations are relevant for optical information processing.

499 citations

Journal ArticleDOI
18 Jun 2014-Sensors
TL;DR: An automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions is developed and successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs).
Abstract: Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded.

306 citations

Journal ArticleDOI
TL;DR: Comparing the different sensor modalities indicates that if only a single sensor type is used, the highest classification rates are achieved with magnetometers, followed by accelerometers and gyroscopes, which may be preferable because of their lower computational requirements.
Abstract: This study provides a comparative assessment on the different techniques of classifying human activities performed while wearing inertial and magnetic sensor units on the chest, arms and legs. The gyroscope, accelerometer and the magnetometer in each unit are tri-axial. Naive Bayesian classifier, artificial neural networks (ANNs), dissimilarity-based classifier, three types of decision trees, Gaussian mixture models (GMMs) and support vector machines (SVMs) are considered.A feature set extracted from the raw sensor data using principal component analysis is used for classification. Three different cross-validation techniques are employed to validate the classifiers. A performance comparison of the classifiers is provided in terms of their correct differentiation rates, confusion matrices and computational cost. The highest correct differentiation rates are achieved with ANNs (99.2%), SVMs (99.2%) and a GMM (99.1%). GMMs may be preferable because of their lower computational requirements. Regarding the position of sensor units on the body, those worn on the legs are the most informative. Comparing the different sensor modalities indicates that if only a single sensor type is used, the highest classification rates are achieved with magnetometers, followed by accelerometers and gyroscopes. The study also provides a comparison between two commonly used open source machine learning environments (WEKA and PRTools) in terms of their functionality, manageability, classifier performance and execution times.

271 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1991
TL;DR: A real-time obstacle avoidance method for mobile robots which has been developed and implemented, named the vector field histogram (VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target.
Abstract: A real-time obstacle avoidance method for mobile robots which has been developed and implemented is described. This method, named the vector field histogram (VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses a two-dimensional Cartesian histogram grid as a world model. This world model is updated continuously with range data sampled by onboard range sensors. The VFH method subsequently uses a two-stage data-reduction process to compute the desired control commands for the vehicle. Experimental results from a mobile robot traversing densely cluttered obstacle courses in smooth and continuous motion and at an average speed of 0.6-0.7 m/s are shown. A comparison of the VFN method to earlier methods is given. >

2,352 citations

Journal ArticleDOI
TL;DR: The state of the art in HAR based on wearable sensors is surveyed and a two-level taxonomy in accordance to the learning approach and the response time is proposed.
Abstract: Providing accurate and opportune information on people's activities and behaviors is one of the most important tasks in pervasive computing. Innumerable applications can be visualized, for instance, in medical, security, entertainment, and tactical scenarios. Despite human activity recognition (HAR) being an active field for more than a decade, there are still key aspects that, if addressed, would constitute a significant turn in the way people interact with mobile devices. This paper surveys the state of the art in HAR based on wearable sensors. A general architecture is first presented along with a description of the main components of any HAR system. We also propose a two-level taxonomy in accordance to the learning approach (either supervised or semi-supervised) and the response time (either offline or online). Then, the principal issues and challenges are discussed, as well as the main solutions to each one of them. Twenty eight systems are qualitatively evaluated in terms of recognition performance, energy consumption, obtrusiveness, and flexibility, among others. Finally, we present some open problems and ideas that, due to their high relevance, should be addressed in future research.

2,184 citations

Proceedings ArticleDOI
12 Aug 2011
TL;DR: This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications, applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity sensor arrays that also include tri- axis magnetometers.
Abstract: This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications. It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays that also include tri-axis magnetometers. The MARG implementation incorporates magnetic distortion compensation. The algorithm uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimised gradient descent algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. Performance has been evaluated empirically using a commercially available orientation sensor and reference measurements of orientation obtained using an optical measurement system. Performance was also benchmarked against the propriety Kalman-based algorithm of orientation sensor. Results indicate the algorithm achieves levels of accuracy matching that of the Kalman based algorithm; < 0.8° static RMS error, < 1.7° dynamic RMS error. The implications of the low computational load and ability to operate at small sampling rates significantly reduces the hardware and power necessary for wearable inertial movement tracking, enabling the creation of lightweight, inexpensive systems capable of functioning for extended periods of time.

1,803 citations

Journal ArticleDOI
TL;DR: The authors briefly introduce the functional Fourier transform and a number of its properties and present some new results: the interpretation as a rotation in the time-frequency plane, and the FRFT's relationships with time- frequencies such as the Wigner distribution, the ambiguity function, the short-time Fouriertransform and the spectrogram.
Abstract: The functional Fourier transform (FRFT), which is a generalization of the classical Fourier transform, was introduced a number of years ago in the mathematics literature but appears to have remained largely unknown to the signal processing community, to which it may, however, be potentially useful. The FRFT depends on a parameter /spl alpha/ and can be interpreted as a rotation by an angle /spl alpha/ in the time-frequency plane. An FRFT with /spl alpha/=/spl pi//2 corresponds to the classical Fourier transform, and an FRFT with /spl alpha/=0 corresponds to the identity operator. On the other hand, the angles of successively performed FRFTs simply add up, as do the angles of successive rotations. The FRFT of a signal can also be interpreted as a decomposition of the signal in terms of chirps. The authors briefly introduce the FRFT and a number of its properties and then present some new results: the interpretation as a rotation in the time-frequency plane, and the FRFT's relationships with time-frequency representations such as the Wigner distribution, the ambiguity function, the short-time Fourier transform and the spectrogram. These relationships have a very simple and natural form and support the FRFT's interpretation as a rotation operator. Examples of FRFTs of some simple signals are given. An example of the application of the FRFT is also given. >

1,698 citations