scispace - formally typeset
Search or ask a question
Author

Bin Han

Other affiliations: Discovery Institute
Bio: Bin Han is an academic researcher from Syngenta. The author has contributed to research in topics: Gene & Arabidopsis. The author has an hindex of 6, co-authored 10 publications receiving 2542 citations. Previous affiliations of Bin Han include Discovery Institute.

Papers
More filters
Journal ArticleDOI
15 Dec 2000-Science
TL;DR: This study presents a comprehensive view of the temporal compartmentalization of physiological pathways by the circadian clock in a eukaryote.
Abstract: Like most organisms, plants have endogenous biological clocks that coordinate internal events with the external environment. We used high-density oligonucleotide microarrays to examine gene expression in Arabidopsis and found that 6% of the more than 8000 genes on the array exhibited circadian changes in steady-state messenger RNA levels. Clusters of circadian-regulated genes were found in pathways involved in plant responses to light and other key metabolic pathways. Computational analysis of cycling genes allowed the identification of a highly conserved promoter motif that we found to be required for circadian control of gene expression. Our study presents a comprehensive view of the temporal compartmentalization of physiological pathways by the circadian clock in a eukaryote.

1,600 citations

Journal ArticleDOI
TL;DR: Despite high similarity between responses mediated by the R genes R PS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1- mediated responses were not, which is consistent with the resistance phenotypes of these plants.
Abstract: We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene–resistance (R) gene combinations. Approximately 2000 of the ∼8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system.

741 citations

Journal ArticleDOI
Nicholas J. Provart1, Pedro Gil1, Wenqiong Chen1, Bin Han1, Hur-Song Chang1, Xun Wang1, Tong Zhu1 
TL;DR: This reference gene list, including genes related to lipid metabolism, chloroplast function, carbohydrate metabolism and free radical detoxification, represents a potential source for genes with a critical role in plant acclimation to suboptimal temperatures.
Abstract: Chilling is a common abiotic stress that leads to economic losses in agriculture. By comparing the transcriptome of Arabidopsis under normal (22 degrees C) and chilling (13 degrees C) conditions, we have surveyed the molecular responses of a chilling-resistant plant to acclimate to a moderate reduction in temperature. The mRNA accumulation of approximately 20% of the approximately 8,000 genes analyzed was affected by chilling. In particular, a highly significant number of genes involved in protein biosynthesis displayed an increase in transcript abundance. We have analyzed the molecular phenotypes of 12 chilling-sensitive mutants exposed to 13 degrees C before any visible phenotype could be detected. The number and pattern of expression of chilling-responsive genes in the mutants were consistent with their final degree of chilling injury. The mRNA accumulation profiles for the chilling-lethal mutants chs1, chs2, and chs3 were highly similar and included extensive chilling-induced and mutant-specific alterations in gene expression. The expression pattern of the mutants upon chilling suggests that the normal function of the mutated loci prevents a damaging widespread effect of chilling on transcriptional regulation. In addition, we have identified 634 chilling-responsive genes with aberrant expression in all of the chilling-lethal mutants. This reference gene list, including genes related to lipid metabolism, chloroplast function, carbohydrate metabolism and free radical detoxification, represents a potential source for genes with a critical role in plant acclimation to suboptimal temperatures. The comparison of transcriptome profiles after transfer of Arabidopsis plants from 22 degrees C to 13 degrees C versus transfer to 4 degrees C suggests that quantitative and temporal differences exist between these molecular responses.

137 citations

Journal ArticleDOI
TL;DR: The designed and used a high-density oligonucleotide probe array (GeneChip) to profile global gene expression patterns of Arabidopsis thaliana, providing insight into the coordinated transcriptional regulation of the genes during plant growth and development.

117 citations

Patent
Paul Budworth1, Devon Brown1, Hur-Song Chang1, Tong Zhu1, Bin Han1, Xun Wang1, Bret Cooper1 
22 Jun 2001
TL;DR: In this paper, the authors proposed a method to identify a plurality of plant promoters having specified characteristics and promoters identified by the method. And also provided transgenic plants comprising the genes identified using the methods of the invention.
Abstract: The invention provides a method to identify a plurality of plant promoters having specified characteristics and promoters identified by the method. Also provided are transgenic plants comprising the genes identified by the methods of the invention.

29 citations


Cited by
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Abstract: Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.

10,539 citations

Journal ArticleDOI
TL;DR: This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens.
Abstract: It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.

3,721 citations

Journal ArticleDOI
TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Abstract: The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues. The resulting data set provides the expression patterns for thousands of predicted genes, as well as known and poorly characterized genes, from mice and humans. We have explored this data set for global trends in gene expression, evaluated commonly used lines of evidence in gene prediction methodologies, and investigated patterns indicative of chromosomal organization of transcription. We describe hundreds of regions of correlated transcription and show that some are subject to both tissue and parental allele-specific expression, suggesting a link between spatial expression and imprinting.

3,513 citations

Journal ArticleDOI
TL;DR: The role of flavonoids as the major red, blue, and purple pigments in plants has gained these secondary products a great deal of attention over the years.
Abstract: The role of flavonoids as the major red, blue, and purple pigments in plants has gained these secondary products a great deal of attention over the years. From the first description of acid and base effects on plant pigments by Robert Boyle in 1664 to the characterization of structural and

2,916 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that MAMPs, DAMPs, and effectors are all perceived as danger signals and induce a stereotypic defense response, and the importance of MAMP/PRR signaling for plant immunity is highlighted.
Abstract: Microbe-associated molecular patterns (MAMPs) are molecular signatures typical of whole classes of microbes, and their recognition plays a key role in innate immunity. Endogenous elicitors are similarly recognized as damage-associated molecular patterns (DAMPs). This review focuses on the diversity of MAMPs/DAMPs and on progress to identify the corresponding pattern recognition receptors (PRRs) in plants. The two best-characterized MAMP/PRR pairs, flagellin/FLS2 and EF-Tu/EFR, are discussed in detail and put into a phylogenetic perspective. Both FLS2 and EFR are leucine-rich repeat receptor kinases (LRR-RKs). Upon treatment with flagellin, FLS2 forms a heteromeric complex with BAK1, an LRR-RK that also acts as coreceptor for the brassinolide receptor BRI1. The importance of MAMP/PRR signaling for plant immunity is highlighted by the finding that plant pathogens use effectors to inhibit PRR complexes or downstream signaling events. Current evidence indicates that MAMPs, DAMPs, and effectors are all perceived as danger signals and induce a stereotypic defense response.

2,801 citations