scispace - formally typeset
Search or ask a question
Author

Bin Jia

Bio: Bin Jia is an academic researcher from Shihezi University. The author has contributed to research in topics: Echinococcus granulosus & Genotype. The author has an hindex of 6, co-authored 28 publications receiving 139 citations.

Papers
More filters
Journal ArticleDOI
Song Jiang1, Xin Li1, Xuhai Wang1, Qian Ban2, Wenqiao Hui1, Bin Jia1 
01 Jan 2016-Parasite
TL;DR: To identify microRNA controlling resistance to CE in the early stage of infection, microRNA profiling was conducted in the intestinal tissue of sheep with resistant and non-resistant MHC haplotypes after peroral infection with E. granulosus.
Abstract: Cystic echinococcosis (CE), caused by infection with the larval stage of the cestode Echinococcus granulosus , is a chronic zoonosis, to which sheep are highly susceptible. Previously, we found that Kazakh sheep with different MHC haplotypes differed in CE infection. Sheep with haplotype MHCMva Ibc-Sac IIab-Hin 1Iab were resistant to CE infection, while their counterparts without this haplotype were not. MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at the post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. To identify microRNA controlling resistance to CE in the early stage of infection, microRNA profiling was conducted in the intestinal tissue of sheep with resistant and non-resistant MHC haplotypes after peroral infection with E. granulosus eggs. A total of 351 known and 186 novel miRNAs were detected in the resistant group, against 353 known and 129 novel miRNAs in the non-resistant group. Among these miRNAs, 83 known miRNAs were significantly differentially expressed, including 75 up-regulated and 8 down-regulated miRNAs. Among these known microRNAs, miR-21-3p, miR-542-5p, miR-671, miR-134-5p, miR-26b, and miR-27a showed a significantly higher expression in CE-resistant sheep compared to the CE-non-resistant library, with the FC > 3. Functional analysis showed that they were NF-kB pathway-responsive miRNAs, which are involved in the inflammation process. The results suggest that these microRNAs may play important roles in the response of intestinal tissue to E. granulosus .

26 citations

Journal ArticleDOI
Hong Shen1, Guohua Han1, Bin Jia1, Song Jiang1, Ying-Chun Du1 
TL;DR: MHC-DRB1/DQB1 exon 2 plays an important role as resistant to C.E in Chinese Merino sheep and the molecular genetic marker of antiechinococcosis was screened out in ChineseMerino sheep.
Abstract: The aim of this study was to analyze the relationship between polymorphism of the MHC-DRB1/DQB1 gene and its resistance to Cystic Echinococcosis (C.E), as well as to screen out the molecular genetic marker of antiechinococcosis in Chinese Merino sheep. The MHCII-DRB1/DQB1 exon 2 was amplified by polymerase chain reaction (PCR) from DNA samples of healthy and hydatidosis sheep. PCR products were characterized by restriction fragment length polymorphism (RFLP) technique. Five restriction enzymes (Mval, HaeIII, SacI, SacII, and Hin1I) were employed to cut DRB1, while seven restriction enzymes (MroxI, ScaI, SacII, NciI, TaqI, Mval, and HaeIII) were employed to cut DQB1.Results showed that frequencies of patterns Mvalbb (P < 0.01), SacIab in DRB1 exon 2 (P < 0.05), and TaqIaa, HaeIIInn (P < 0.01) in DQB1 exon 2 were significantly higher in the healthy group compared with the C.E individuals, which implied that there was a strong association between these genotypes and hydatidosis resistance or susceptibility. Chi-square test showed that individuals with the genic haplotype DRB1-SacIab/DRB1-Mvalbb/DQB1-TaqIaa/DQB1-HaeIIInn (P < 0.01) were relatively resistant to C.E, while individuals with the genic haplotypes DRB1-Mvalbc/DQB1-Mvalyy/DQB1-TaqIab/DQB1-HaeIIImn (P < 0.01) and DRB1-Mvalbb/DQB1-Mvalcc/DQB1-TaqIab/DQB1-HaeIIImn (P < 0.01) were more susceptible to C.E. In addition, to confirm these results, a fielding experiment was performed with Chinese Merino sheep which were artificially infected with E.g. The result was in accordance with the results of the first study. In conclusion, MHC-DRB1/DQB1 exon 2 plays an important role as resistant to C.E in Chinese Merino sheep. In addition, the molecular genetic marker of antiechinococcosis (DRB1-SacIab/DRB1-Mvalbb/DQB1-TaqIaa/DQB1-HaeIIInn) was screened out in Chinese Merino sheep.

19 citations

Journal ArticleDOI
R.Y. Li1, Wenqiao Hui1, Bin Jia1, G.Q. Shi1, Z.S. Zhao1, H. Shen1, Q. Peng1, L.M. Lv1, Q.W. Zhou1, H.T. Li1 
01 May 2011-Parasite
TL;DR: It is suggested that the Ovar-DRB1 gene plays a role in resistance to hydatidosis infection in the three sheep breeds.
Abstract: The present study aimed at detecting the association of ovine major histocompatibility complex class II (Ovar II) DRB1 gene second exon and susceptibility or resistance to hydatidosis in three sheep breeds of Sinkiang. The MHC-DRB1 second exon was amplified by polymerase chain reaction (PCR) from DNA samples of healthy sheep and sheep with hydatidosis. PCR products were characterized by the restriction fragment length polymorphism (RFLP) technique. Five restriction enzymes, MvaI, HaeIII, SacI, SacII, Hin1I, were used, yielding 14 alleles and 31 restriction patterns. Frequencies of patterns MvaIbc, Hin1Iab, SacIIab, HaeIIIde, HaeIIIdf, HaeIIIdd (P < 0.01) in Kazakh sheep, SacIab (P < 0.05) in Duolang sheep, and HaeIIIab, HaeIIIce, HaeIIIde, HaeIIIee (P < 0.01) in Chinese Merino (Sinkiang Junken type) sheep, were significantly higher in healthy sheep compared with infected sheep. These results indicated a strong association between these patterns and hydatidosis resistance. In contrast, the frequencies of MvaIbb, SacIIaa, Hin1Ibb, HaeIIIef (P < 0.01) and HaeIIIab (P < 0.05) in Kazakh sheep, SacIbb, HaeIIIae, Hin1Iab (P < 0.05), HaeIIIaa, HaeIIIbe, HaeIIIef (P < 0.01) in Duolang sheep, SacIIaa (P < 0.05) and HaeIIIbd, Hin1Ibb, HaeIIIcf, HaeIIIef (P < 0.01) in Chinese Merino sheep (Sinkiang Junken type) were significantly lower in healthy sheep compared with infected sheep. This indicated a strong association between these patterns and hydatidosis susceptibility. In addition, sheep with the pattern of HaeIIIef demonstrated a high hydatidosis susceptibility (P < 0.01) in all three breeds, while sheep with the pattern HaeIIIde demonstrated significant hydatidosis resistance (P < 0.01) in Kazakh and Chinese Merino sheep (Sinkiang Junken type). These results suggest that the Ovar-DRB1 gene plays a role in resistance to hydatidosis infection in the three sheep breeds.

16 citations

Journal ArticleDOI
TL;DR: It showed that the genic haplotype MvaIbc-SacIIab-Hin1Iab of Ovar-DRB1 exon 2 was the resistant haplotype of hydatidosis in Kazakh sheep, indicating that a marked correlation existed between these genotypes and susceptibility to hyd atidosis.
Abstract: The objective of this work was to analyze the relationship between ovine major histocompatibility complex (MHC) DRB1 gene polymorphism and genetic resistance to hydatidosis in Kazakh sheep. The Ovar (ovine MHC) class II DRB1 second exon was amplified by polymerase chain reaction (PCR) from DNA samples of 702 Kazakh sheep, including 302 sheep with hydatidosis and 400 health controls. PCR products were characterized by the restriction fragment length polymorphism (RFLP) technique using five restriction enzymes, i.e., MvaI, HaeIII, SacI, SacII and Hin1I, yielding 14 alleles and 28 genotypes. Comparing the frequency of genotypes in hydatidosis sheep with the control group, it was found that the genotype frequencies of MvaIbc, Hin1Iab, SacIIab, HaeIIIde, HaeIIIdf and HaeIIIdd in control sheep were significantly (p<0.01) higher than in hydatidosis sheep, indicating that a significant correlation existed between these genotypes and resistance to hydatidosis. Genotype frequencies of MvaIbb, SacIIaa, Hin1Ibb and HaeIIIef in sheep with hydatidosis were extremely significantly (p<0.01) higher than in the control group, and the genotype frequency of HaeIIIab was significantly higher (p<0.05), indicating that a marked correlation existed between these genotypes and susceptibility to hydatidosis. By way of analyzing haplotype with these resistant genotypes, the hydatidosis resistant haplotype MvaIbc-SacIIab-Hin1Iab of Kazakh sheep was screened out, and then verified through artificial hydatid infection in sheep. The results indicated that the infection rate of sheep with the resistant haplotype of hydatidosis was significantly lower (p<0.01) than without this resistant haplotype. It showed that the genic haplotype MvaIbc-SacIIab-Hin1Iab of Ovar-DRB1 exon 2 was the resistant haplotype of hydatidosis in Kazakh sheep.

14 citations

Journal ArticleDOI
TL;DR: The clustering analysis performed with the DISPAN package showed that Aletai, Kazak, Bashibai and Bayinbuluke were grouping together, and Hetian, Qira black and Duolang were grouped together, which indicated that the relationship among breeds displayed some degree of consistency with their geographical distribution, production and origin.
Abstract: The aim of this study was to evaluate, through the use of microsatellite markers, the current genetic diversity and the relationships of 375 individuals from 8 local sheep breeds reared in typical breeding farms in the northwest of China, and moreover, to offer a contribution towards genetic conservation decisions for the studied breeds. The expected heterozygosities and allelic richness for the 8 breeds varied from 0.474 to 0.623 and from 3.8 to 5.4, respectively. All the populations showed a significant deficit in heterozygosity and a relatively low level of genetic diversity. Furthermore, the high positive F IS value (ranging from 0.255 to 0.556) indicated inbreeding to be one of the main causes for high genetic homogeneity and lack of heterozygosity in all breeds. The clustering analysis performed with the DISPAN package showed that Aletai, Kazak, Bashibai and Bayinbuluke were grouped together, and Hetian, Qira black and Duolang were grouped together, which indicated that the relationship among breeds displayed some degree of consistency with their geographical distribution, production and origin. These findings indicate that improved conservation measures must be undertaken to avoid further losses of genetic diversity and minimize inbreeding represented by these breeds.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Y chromosome harbors a number of genes essential for testis development and function and is responsible for Y-linked copy-number variations (CNVs) with clinical relevance and in certain populations, the Y background may play a role in the phenotypic expression of partial AZFc rearrangements and similarly it may affect the predisposition to specific deleting events.
Abstract: The Y chromosome harbors a number of genes essential for testis development and function. Its highly repetitive structure predisposes this chromosome to deletion/duplication events and is responsible for Y-linked copy-number variations (CNVs) with clinical relevance. The AZF deletions remove genes with predicted spermatogenic function en block and are the most frequent known molecular causes of impaired spermatogenesis (5–10% of azoospermic and 2–5% of severe oligozoospermic men). Testing for this deletion has both diagnostic and prognostic value for testicular sperm retrieval in azoospermic men. The most dynamic region on the Yq is the AZFc region, presenting numerous NAHR hotspots leading to partial losses or gains of the AZFc genes. The gr/gr deletion (a partial AZFc deletion) negatively affects spermatogenic efficiency and it is a validated, population-dependent risk factor for oligozoospermia. In certain populations, the Y background may play a role in the phenotypic expression of partial AZFc rearrangements and similarly it may affect the predisposition to specific deletions/duplication events. Also, the Yp contains a gene array, TSPY1, with potential effect on germ cell proliferation. Despite intensive investigations during the last 20 years on the role of this sex chromosome in spermatogenesis, a number of clinical and basic questions remain to be answered. This review is aimed at providing an overview of the role of Y chromosome-linked genes, CNVs, and Y background in spermatogenesis.

110 citations

Journal ArticleDOI
TL;DR: Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improvingAnimal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs.
Abstract: Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.

61 citations

Journal ArticleDOI
TL;DR: Circulating miRNAs may be useful as detection biomarkers for the early diagnosis of minimal–mild endometriosis and validated by qPCR in additional samples.
Abstract: Objective(s):The potential roles of serum microRNAs (miRNAs), as biomarkers, in noninvasive diagnosis of endometriosis have been reported by microarray analysis. However, microarray analysis cannot...

53 citations