scispace - formally typeset
Search or ask a question
Author

Bin Shen

Bio: Bin Shen is an academic researcher from Inha University. The author has contributed to research in topics: Cognitive radio & Bit error rate. The author has an hindex of 10, co-authored 36 publications receiving 450 citations. Previous affiliations of Bin Shen include Chongqing University of Posts and Telecommunications.

Papers
More filters
Journal ArticleDOI
28 Dec 2009-Sensors
TL;DR: The WBAN requirements that are important for the design of a low-power MAC protocol are outlined and useful suggestions are given to help the MAC designers to develop aLow Access Control protocol that will satisfy the stringent requirements.
Abstract: The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires the low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements, including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for a WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for a WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent requirements.

131 citations

Journal ArticleDOI
TL;DR: In this paper, the authors outline the WBAN requirements that are important for the design of a low-power MAC protocol and study low power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses.
Abstract: The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks and proposed two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network.
Abstract: This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

56 citations

Journal ArticleDOI
TL;DR: A comprehensive study on the performance of RF communication to-from a human body and low-power MAC protocols for a WBAN including a case study of IEEE 802.15.4, PB-TDMA, and SMAC protocols.
Abstract: Recent advances in micro-electro-mechanical systems, wireless communication, low-power intelligent sensors, and semiconductor technologies have allowed the realization of a wireless body area network (WBAN). A WBAN provides unobtrusive health monitoring for a long period of time with real-time updates to the physician. It is widely used for ubiquitous health care, entertainment, and military applications. The implantable and wearable medical devices have several critical requirements such as power consumption, data rate, size, and low-power medium access control (MAC) protocols. This article consists of two parts: body implant communication, which is concerned with the communication to and from a human body using radio frequency (RF) technology, and WBAN MAC protocols, which presents several low-power MAC protocols for a WBAN with useful guidelines including a case study of IEEE 802.15.4, PB-TDMA, and SMAC protocols. In body implant communication, the in-body RF performance is affected considerably by the implant's depth and different polarization combinations inside the human body as well as by the muscle and fat. We observe best performance at a depth of 3 to 5 cm and not close to the human skin. Furthermore, the study of low-power MAC protocols highlights the most important aspects of developing a novel low-power and reliable MAC protocol for a WBAN. Copyright © 2010 John Wiley & Sons, Ltd. This paper presents a comprehensive study on the performance of RF communication to-from a human body and low-power MAC protocols for a WBAN including a case study of IEEE 802.15.4, PB-TDMA, and SMAC protocols. It can be seen that in-body RF performance is considerably affected by the implant's depth and different polarization combinations. In addition, the study of low-power MAC protocols highlights the most important aspects of developing a novel and reliable MAC protocol for a WBAN. Copyright © 2010 John Wiley & Sons, Ltd.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an optimal cooperative spectrum sensing scheme based on the criterion of deflection coefficient maximization of the global decision statistic, where multiple cooperative secondary users serve in the cognitive radio network to provide space diversity for spectrum sensing.
Abstract: This paper proposes an optimal cooperative spectrum sensing scheme, based on the criterion of deflection coefficient maximization of the global decision statistic. Multiple cooperative secondary users serve in the cognitive radio network to provide space diversity for spectrum sensing. After the fusion center acquires the optimal fusion weights, an optimal global threshold setting strategy is utilized to obtain the final global decision. Since the proposed optimal cooperative sensing scheme requires precise estimations of primary user signal strengths and the noise variances at different cooperative secondary users, a recursive estimate algorithm is also proposed. Simulations illustrate the proposed optimal soft fusion scheme can significantly improve the spectrum sensing performance and outperform the conventional maximal-ratio combining and equal gain combining schemes. The recursive estimate algorithm can effectively approach the ideal performance of the proposed sensing scheme.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.

1,359 citations

Journal ArticleDOI
TL;DR: The fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed and many useful solutions are discussed for each layer.
Abstract: Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted.

788 citations

Journal ArticleDOI
TL;DR: The scope of this work is to give an overview of the security threats and challenges that cognitive radios and cognitive radio networks face, along with the current state-of-the-art to detect the corresponding attacks.
Abstract: With the rapid proliferation of new technologies and services in the wireless domain, spectrum scarcity has become a major concern. The allocation of the Industrial, Medical and Scientific (ISM) band has enabled the explosion of new technologies (e.g. Wi-Fi) due to its licence-exempt characteristic. The widespread adoption of Wi-Fi technology, combined with the rapid penetration of smart phones running popular user services (e.g. social online networks) has overcrowded substantially the ISM band. On the other hand, according to a number of recent reports, several parts of the static allocated licensed bands are under-utilized. This has brought up the idea of the opportunistic use of these bands through the, so-called, cognitive radios and cognitive radio networks. Cognitive radios have enabled the opportunity to transmit in several licensed bands without causing harmful interference to licensed users. Along with the realization of cognitive radios, new security threats have been raised. Adversaries can exploit several vulnerabilities of this new technology and cause severe performance degradation. Security threats are mainly related to two fundamental characteristics of cognitive radios: cognitive capability, and reconfigurability. Threats related to the cognitive capability include attacks launched by adversaries that mimic primary transmitters, and transmission of false observations related to spectrum sensing. Reconfiguration can be exploited by attackers through the use of malicious code installed in cognitive radios. Furthermore, as cognitive radio networks are wireless in nature, they face all classic threats present in the conventional wireless networks. The scope of this work is to give an overview of the security threats and challenges that cognitive radios and cognitive radio networks face, along with the current state-of-the-art to detect the corresponding attacks. In addition, future challenges are addressed.

434 citations

Journal ArticleDOI
TL;DR: The scope of this work is to give an overview of the problem of spectrum assignment in cognitive radio networks, presenting the state-of-the-art proposals that have appeared in the literature, analyzing the criteria for selecting the most suitable portion of the spectrum and showing the most common approaches and techniques used to solve the spectrum assignment problem.
Abstract: Cognitive radio (CR) has emerged as a promising technology to exploit the unused portions of spectrum in an opportunistic manner. The fixed spectrum allocation of governmental agencies results in unused portions of spectrum, which are called "spectrum holes" or "white spaces". CR technology overcomes this issue, allowing devices to sense the spectrum for unused portions and use the most suitable ones, according to some pre-defined criteria. Spectrum assignment is a key mechanism that limits the interference between CR devices and licensed users, enabling a more efficient usage of the wireless spectrum. Interference is a key factor that limits the performance in wireless networks. The scope of this work is to give an overview of the problem of spectrum assignment in cognitive radio networks, presenting the state-of-the-art proposals that have appeared in the literature, analyzing the criteria for selecting the most suitable portion of the spectrum and showing the most common approaches and techniques used to solve the spectrum assignment problem. Finally, an analysis of the techniques and approaches is presented, discussing also the open issues for future research in this area.

382 citations

Journal ArticleDOI
TL;DR: This article presents a general view of fairness studies, and poses three core questions that help to delineate the nuances in defining fairness, and looks into the major fairness research domains in wireless networks such as fair energy consumption control, power control, topology control, link and flow scheduling, channel assignment, rate allocation, congestion control and routing protocols.
Abstract: The pervasiveness of wireless technology has indeed created massive opportunity to integrate almost everything into the Internet fabric. This can be seen with the advent of Internet of Things and Cyber Physical Systems, which involves cooperation of massive number of intelligent devices to provide intelligent services. Fairness amongst these devices is an important issue that can be analysed from several dimensions, e.g., energy usage, achieving required quality of services, spectrum sharing, and so on. This article focusses on these viewpoints while looking at fairness research. To generalize, mainly wireless networks are considered. First, we present a general view of fairness studies, and pose three core questions that help us delineate the nuances in defining fairness. Then, the existing fairness models are summarized and compared. We also look into the major fairness research domains in wireless networks such as fair energy consumption control, power control, topology control, link and flow scheduling, channel assignment, rate allocation, congestion control and routing protocols. We make a distinction amongst fairness, utility and resource allocation to begin with. Later, we present their inter-relation. At the end of this article, we list the common properties of fairness and give an example of fairness management. Several open research challenges that point to further work on fairness in wireless networks are also discussed. Indeed, the research on fairness is entangled with many other aspects such as performance, utility, optimization and throughput at the network and node levels. While consolidating the contributions in the literature, this article tries to explain the niceties of all these aspects in the domain of wireless networking.

369 citations