scispace - formally typeset
Search or ask a question
Author

Bin Wang

Bio: Bin Wang is an academic researcher from University of Texas at San Antonio. The author has contributed to research in topics: Metal-organic framework & Adsorption. The author has an hindex of 24, co-authored 55 publications receiving 3394 citations. Previous affiliations of Bin Wang include Beijing University of Technology & Fujian Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency and be potentially useful in monitoring water quality and treating wastewater.
Abstract: Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal–organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5′-(4-carboxyphenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6′,6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer–Emmett–Teller surface area of 3387 and 3948 m2 g–1, respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs ...

1,164 citations

Journal ArticleDOI
TL;DR: It is found that strong π–π interactions in solid state can promote the persistent RTP and CS-CF3 shows the unique photo-induced phosphorescence in response to the changes in molecular packing, further confirming the key influence of the molecular packing on the RTP property.
Abstract: Organic luminogens with persistent room temperature phosphorescence (RTP) have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, these materials are still very scarce, partially due to the unclear mechanism and lack of designing guidelines. Herein we develop seven 10-phenyl-10H-phenothiazine-5,5-dioxide-based derivatives, reveal their different RTP properties and underlying mechanism, and exploit their potential imaging applications. Coupled with the preliminary theoretical calculations, it is found that strong π-π interactions in solid state can promote the persistent RTP. Particularly, CS-CF3 shows the unique photo-induced phosphorescence in response to the changes in molecular packing, further confirming the key influence of the molecular packing on the RTP property. Furthermore, CS-F with its long RTP lifetime could be utilized for real-time excitation-free phosphorescent imaging in living mice. Thus, our study paves the way for the development of persistent RTP materials, in both the practical applications and the inherent mechanism.

645 citations

Journal ArticleDOI
TL;DR: In this article, a chemically stable and structurally flexible metal-organic framework (MOF), known as BUT-8(Cr)A, was proposed for use in proton exchange membrane fuel cells.
Abstract: The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal–organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (–SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its –SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10−1 S cm−1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature. Proton-conducting metal-organic frameworks (MOFs) could be used as the electrolytes in proton exchange membrane fuel cells but chemically stable materials that perform well at low humidity are still sought. Here the authors prepare a stable, structurally flexible MOF that maintains high proton conductivity under a wide range of humidity.

491 citations

Journal ArticleDOI
TL;DR: It is demonstrated that BUT-15 exhibits an uncompromised performance for the detection of Fe3+ ions in a simulated biological system and shows intense fluorescence in water, which can be solely quenched by trace amounts of Fe 3+ ions.
Abstract: Metal–organic frameworks are a class of attractive materials for fluorescent sensing. Improvement of hydrolytic stability, sensitivity, and selectivity of function is the key to advance application of fluorescent MOFs in aqueous media. In this work, two stable MOFs, [Zr6O4(OH)8(H2O)4(L1)2] (BUT-14) and [Zr6O4(OH)8(H2O)4(L2)2] (BUT-15), were designed and synthesized for the detection of metal ions in water. Two new ligands utilized for construction of the MOFs, namely, 5′,5‴-bis(4-carboxyphenyl)-[1,1′:3′,1″:4″,1‴:3‴,1′′′′-quinquephenyl]-4,4′′′′-dicarboxylate (L1) and 4,4′,4″,4‴-(4,4′-(1,4-phenylene)bis(pyridine-6,4,2-triyl))tetrabenzoate (L2), are structurally similar with the only difference being that the latter is functionalized by pyridine N atoms. The two MOFs are isostructural with a sqc-a topological framework structure, and highly porous with the Brunauer–Emmett–Teller (BET) surface areas of 3595 and 3590 m2 g–1, respectively. Interestingly, they show intense fluorescence in water, which can be sol...

342 citations

Journal ArticleDOI
TL;DR: The H-bonding motifs used for constructing porous HOFs are reviewed and some of their applications are highlighted, including gas separation and storage, chiral separation and structure determi-nation, fluorescent sensing, heterogeneous catalysis, biological applications, proton conduction, photoluminescent materials, and membrane-based applications.
Abstract: As a novel class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metal-organic building blocks through intermolecular hydrogen-bonding interactions, have attracted more and more attention. Over the past decade, a number of porous HOFs have been constructed through judicious selection of H-bonding motifs, which are further enforced by other weak intermolecular interactions such as π-π stacking and van der Waals forces and framework interpenetration. Since the H-bonds are weaker than coordinate and covalent bonds used for the construction of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), HOFs have some unique features such as mild synthesis condition, solution processability, easy healing, and regeneration. These features enable HOFs to be a tunable platform for the construction of functional materials. Here, we review the H-bonding motifs used for constructing porous HOFs and highlight some of their applications, including gas separation and storage, chiral separation and structure determination, fluorescent sensing, heterogeneous catalysis, biological applications, proton conduction, photoluminescent materials, and membrane-based applications.

295 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.
Abstract: Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure–property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

2,239 citations

Journal ArticleDOI
TL;DR: This review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Abstract: Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in gas storage, separations, catalysis, and chemical sensing. Despite numerous advantages, applications of many MOFs are ultimately limited by their stability under harsh conditions. Herein, the recent advances in the field of stable MOFs, covering the fundamental mechanisms of MOF stability, design, and synthesis of stable MOF architectures, and their latest applications are reviewed. First, key factors that affect MOF stability under certain chemical environments are introduced to guide the design of robust structures. This is followed by a short review of synthetic strategies of stable MOFs including modulated synthesis and postsynthetic modifications. Based on the fundamentals of MOF stability, stable MOFs are classified into two categories: high-valency metal-carboxylate frameworks and low-valency metal-azolate frameworks. Along this line, some representative stable MOFs are introduced, their structures are described, and their properties are briefly discussed. The expanded applications of stable MOFs in Lewis/Bronsted acid catalysis, redox catalysis, photocatalysis, electrocatalysis, gas storage, and sensing are highlighted. Overall, this review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.

1,721 citations

Journal ArticleDOI
TL;DR: Advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications to provide guidance for the in-depth investigation of MOFs towards practical applications.
Abstract: Among the large family of metal–organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. Although this specific type of MOF is still in its early stage of development, significant progress has been made in recent years. Herein, advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications. Four synthesis strategies implemented in building and/or modifying Zr-MOFs as well as their scale-up preparation under green and industrially feasible conditions are illustrated first. Zr-MOFs with various structural types are then classified and discussed in terms of different Zr-based secondary building units and organic ligands. Finally, applications of Zr-MOFs in catalysis, molecule adsorption and separation, drug delivery, and fluorescence sensing, and as porous carriers are highlighted. Such a review based on a specific type of MOF is expected to provide guidance for the in-depth investigation of MOFs towards practical applications.

1,692 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency and be potentially useful in monitoring water quality and treating wastewater.
Abstract: Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal–organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5′-(4-carboxyphenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6′,6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer–Emmett–Teller surface area of 3387 and 3948 m2 g–1, respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs ...

1,164 citations