scispace - formally typeset
Search or ask a question
Author

Bing He

Bio: Bing He is an academic researcher from Purdue University. The author has contributed to research in topics: Electrochromatography & Deep reactive-ion etching. The author has an hindex of 9, co-authored 9 publications receiving 1172 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In situ micromachining can be used to simultaneously position and define support particles, convective transport channels, an inlet distribution network of channels, and outlet channels in multiple chromatography columns on a single quartz wafer to the level of a few tenths of a micrometer.
Abstract: This paper shows that in situ micromachining can be used to simultaneously position and define (i) support particles, (ii) convective transport channels, (iii) an inlet distribution network of channels, and (iv) outlet channels in multiple chromatography columns on a single quartz wafer to the level of a few tenths of a micrometer. Stationary phases were bonded to 5 × 5 × 10 μm collocated monolith support structures separated by rectangular channels 1.5 μm wide and 10 μm deep with a low degree of deviation of channel width between the top and bottom of channels. High aspect ratio microfabrication can only be achieved with deep reactive ion etching. The volume of a 150 μm × 4.5 cm column was 18 nL. Column efficiency was evaluated in the capillary electrochromatography (CEC) mode using rhodamine 123 and a hydrocarbon stationary phase. Plate heights in these columns were typically 0.6 μm in the nonretained and 1.3 μm in the retained modes of operation. Columns were designed to have identical mobile-phase vel...

421 citations

Journal ArticleDOI
Bing He1, Brian J. Burke1, Xiang Zhang1, Roujian Zhang1, Fred E. Regnier1 
TL;DR: The construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow is reported and it was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-Microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion.
Abstract: Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 μm in width whereas larger 27-μm-width channels ran back and forth through the parallel channel network at a 45° angle. The channel network composing the mixer was ∼10 μm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-μm-wide, 300-μm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the ∼200-μm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt t...

191 citations

Journal ArticleDOI
TL;DR: The objective of this article is to examine the potential role of separation systems in the continuing evolution of biochemistry, biotechnology and molecular biology.

111 citations

Journal ArticleDOI
TL;DR: These lateral percolation filters were shown to be efficacious in filtering solvents containing a variety of particulate materials, ranging from dust to cells.
Abstract: Solvent and reagent filters were micromachined into quartz wafers using deep reactive ion etching to create a network of intersecting 1.5 × 10 μm channels. When placed at the bottom of reservoirs with a side exit, this channel network behaved as a lateral percolation filter composed of an array of cubelike structures one layer deep. Flow through these filters was driven by electroosmotic flow (EOF). Silanol groups at the walls of channels in the network provided the requisite charge to trigger EOF when voltage was applied laterally to the filter. Adsorption of cationic proteins in this silanol-rich matrix was controlled by the application of a polyacrylamide coating prepared by bonding N-hydroxysuccinimide (NHS)-activated poly(acrylic acid) to (γ-aminopropyl)silane-derivatized filters. Subsequent reaction of residual NHS groups in the coating with 2-(2-aminoethoxy)ethanol provided channels of low charge density and adsorptivity. These lateral percolation filters were shown to be efficacious in filtering s...

108 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in situ micromachining can be used to simultaneously fabricate millions of micrometer size, particle like structures in multiple liquid chromatography columns on a single wafer.

101 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the progress on the recent development of micromixers and present different types and designs of active and passive MCMs, as well as the operation points of the MCMs.
Abstract: This review reports the progress on the recent development of micromixers. The review first presents the different micromixer types and designs. Micromixers in this review are categorized as passive micromixers and active micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, passive micromixers will be the focus of this review. Next, the review discusses the operation points of the micromixers based on characteristic dimensionless numbers such as Reynolds number Re, Peclet number Pe, and in dynamic cases the Strouhal number St. The fabrication technologies for different mixer types are also analysed. Quantification techniques for evaluation of the performance of micromixers are discussed. Finally, the review addresses typical applications of micromixers.

1,651 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the transport properties of 50-nm-high 1D nanochannels on a chip and showed that they can be used for the separation and preconcentration of proteins.
Abstract: This thesis explores transport phenomena in nanochannels on a chip. Fundamental nanofluidic ionic studies form the basis for novel separation and preconcentration applications for proteomic purposes. The measurements were performed with 50-nm-high 1D nanochannels, which are easily accessible from both sides by two microchannels. Nanometer characteristic apertures were manufactured in the bonded structure of Pyrex-amorphous silicon – Pyrex, in which the thickness of the amorphous silicon layer serves as a spacer to define the height of the nanochannels. The geometry of the nanometer-sized apertures is well defined, which simplifies the modeling of the transport across them. Compared to biological pores, the present nanochannels in Pyrex offer increased stability. Fundamental characteristics of nanometer-sized apertures were obtained by impedance spectroscopy measurements of the nanochannel at different ionic strengths and pH values. A conductance plateau (on a log-log scale) was modeled and measured, establishing due to the dominance of the surface charge density in the nanochannels, which induces an excess of mobile counterions to maintain electroneutrality. The nanochannel conductance can be regulated at low ionic strengths by pH adjustment, and by an external voltage applied on the chip to change the zeta potential. This field-effect allows the regulation of ionic flow which can be exploited for the fabrication of nanofluidic devices. Fluorescence measurements confirm that 50-nm-high nanochannels show an exclusion of co-ions and an enrichment of counterions at low ionic strengths. This permselectivity is related to the increasing thickness of the electrical double layer (EDL) with decreasing salt concentrations, which results in an EDL overlap in an aperture if the height of the nanochannel and the thickness of the EDL are comparable in size. The diffusive transport of charged species and therefore the exclusion-enrichment effect was described with a simple model based on the Poisson-Boltzmann equation. The negatively charged Pyrex surface of the nanometer characteristic apertures can be inversed with chemical surface pretreatments, resulting in an exclusion of cations and an enrichment of anions. When a pressure gradient is applied across the nanochannels, charged molecules are electrostatically rejected at the entrance of the nanometer-sized apertures, which can be used for separation processes. Proteomic applications are presented such as the separation and preconcentration of proteins. The diffusion of Lectin proteins with different isoelectric points and very similar compositions were controlled by regulating the pH value of the buffer. When the proteins are neutral at their pI value, the diffusion coefficient is maximal because the biomolecules does not interact electrostatically with the charged surfaces of the nanochannel. This led to a fast separation of three Lectin proteins across the nanochannel. The pI values measured in this experiment are slightly shifted compared to the values obtained with isoelectric focusing because of reversible adsorption of proteins on the walls which affects the pH value in the nanochannel. An important application in the proteomic field is the preconcentration of biomolecules. By applying an electric field across the nanochannel, anionic and cationic analytes were preconcentrated on the cathodic side of the nanometer-sized aperture whereas on the anodic side depletion of ions was observed. This is due to concentration polarization, a complex of effects related to the formation of ionic concentration gradients in the electrolyte solution adjacent to an ion-selective interface. It was measured that the preconcentration factor increased with the net charge of the molecule, leading to a preconcentration factor of > 600 for rGFP proteins in 9 minutes. Such preconcentrations are important in micro total analysis systems to achieve increased detection signals of analytes contained in dilute solutions. Compared to cylindrical pores, our fabrication process allows the realization of nanochannels on a chip in which the exclusion-enrichment effect and a big flux across the nanometer-sized aperture can be achieved, showing the interest for possible micro total analysis system applications. The described exclusion-enrichment effect as well as concentration polarization play an important role in transport phenomena in nanofluidics. The appendix includes preliminary investigations in DNA molecule separation and fluorescence correlation spectroscopy measurements, which allows investigating the behavior of molecules in the nanochannel itself.

1,636 citations

Journal ArticleDOI
TL;DR: A review on microstructured mixer devices and their mixing principles concerning miscible liquids (and gases) is given in this article, supplemented by the description of typical mixing element designs, methods for mixing characterisation, and application fields.

1,354 citations

Journal ArticleDOI
Richard B. Fair1
TL;DR: To understand the opportunities and limitations of EWD microfluidics, this paper looks at the development of lab-on-chip applications in a hierarchical approach.
Abstract: The suitability of electrowetting-on-dielectric (EWD) microfluidics for true lab-on-a-chip applications is discussed. The wide diversity in biomedical applications can be parsed into manageable components and assembled into architecture that requires the advantages of being programmable, reconfigurable, and reusable. This capability opens the possibility of handling all of the protocols that a given laboratory application or a class of applications would require. And, it provides a path toward realizing the true lab-on-a-chip. However, this capability can only be realized with a complete set of elemental fluidic components that support all of the required fluidic operations. Architectural choices are described along with the realization of various biomedical fluidic functions implemented in on-chip electrowetting operations. The current status of this EWD toolkit is discussed. However, the question remains: which applications can be performed on a digital microfluidic platform? And, are there other advantages offered by electrowetting technology, such as the programming of different fluidic functions on a common platform (reconfigurability)? To understand the opportunities and limitations of EWD microfluidics, this paper looks at the development of lab-on-chip applications in a hierarchical approach. Diverse applications in biotechnology, for example, will serve as the basis for the requirements for electrowetting devices. These applications drive a set of biomedical fluidic functions required to perform an application, such as cell lysing, molecular separation, or analysis. In turn, each fluidic function encompasses a set of elemental operations, such as transport, mixing, or dispensing. These elemental operations are performed on an elemental set of components, such as electrode arrays, separation columns, or reservoirs. Examples of the incorporation of these principles in complex biomedical applications are described.

1,094 citations

Patent
24 Jun 1997
TL;DR: In this paper, the authors present novel microfluidic devices and methods that are useful for performing high-throughput screening assays for a variety of chemical and biochemical systems.
Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays. In particular, the devices and methods of the invention are useful in screening large numbers of different compounds for their effects on a variety of chemical, and preferably, biochemical systems.

1,068 citations