scispace - formally typeset
Search or ask a question
Author

Bingqing Li

Bio: Bingqing Li is an academic researcher from Central South University. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent advances in the crystallographic optimization for dendrite prevention and suppression and highlight the recent progress of crystallographic optimisation for a new generation of rechargeable batteries, including lithium metal batteries, sodium metal batteries and magnesium metal batteries.
Abstract: Alkali metal anodes have been regarded as an ideal candidate for next generation high-energy electrode couples due to their ultrahigh specific capacity and the lowest redox potential. However, their real-world application has been severely hampered by their highly uncontrollable chemical reactivity, which directly dictates metal dendrite growth behavior during cycling, low coulombic efficiency, and even safety concerns. Crystallographic optimization based on metal anode materials provides a fundamental solution for suppressing dendrite growth and enabling a stable metal anode, which has attracted extensive attention. In this perspective, we summarize the recent advances in the crystallographic optimization for dendrite prevention and suppression and highlight the recent progress of crystallographic optimization for a new generation of rechargeable batteries, including lithium metal batteries, sodium metal batteries, potassium metal batteries, zinc metal batteries and magnesium metal batteries. The challenges and prospects for the future development of crystallographic optimization are discussed to shed light on the future research of crystallographic optimization for boosting the performances of rechargeable batteries.

21 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2021-ACS Nano
TL;DR: In this article, a design strategy for encapsulation of sodium polysulfides using Ti3C2Tx MXene has been presented, which has a high reversible capacity (980 mAh g-1 at 0.5 C rate) and extended cycling stability.
Abstract: The practical application of Na-S batteries is largely hindered by their low mass loading, inferior rate capability, and poor cycling performance. Herein, we report a design strategy for encapsulation of sodium polysulfides using Ti3C2Tx MXene. Porous nitrogen-doped Ti3C2Tx MXene microspheres have been synthesized by a facile synthesis method. Porous nitrogen-doped Ti3C2Tx MXene microspheres contain abundant pore structures and heteroatom functional groups for structural and chemical synergistic encapsulation of sodium polysulfides. Sodium-sulfur batteries, based on the as-proposed cathode, demonstrated outstanding electrochemical performances, including a high reversible capacity (980 mAh g-1 at 0.5 C rate) and extended cycling stability (450.1 mAh g-1 at 2 C after 1000 cycles at a high areal sulfur loading of 5.5 mg cm-2). This MXene-based hybrid material is a promising cathode host material for polysulfide-retention, enabling high-performance Na-S batteries.

32 citations

Journal ArticleDOI
09 May 2022-Small
TL;DR: In this article , the authors comprehensively and critically discuss the syntheses, properties, and emerging applications of the growing family of heteroatom-doped MXenes materials, and present future opportunities and challenges for the study and application of multifunctional high-performance MXenes.
Abstract: Heteroatom doping can endow MXenes with various new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly extends the arsenal of MXenes materials and their potential for a spectrum of applications. This article comprehensively and critically discusses the syntheses, properties, and emerging applications of the growing family of heteroatom-doped MXenes materials. First, the doping strategies, synthesis methods, and theoretical simulations of high-performance MXenes materials are summarized. In order to achieve high-performance MXenes materials, the mechanism of atomic element doping from three aspects of lattice optimization, functional substitution, and interface modification is analyzed and summarized, aiming to provide clues for developing new and controllable synthetic routes. The mechanisms underlying their advantageous uses for energy storage, catalysis, sensors, environmental purification and biomedicine are highlighted. Finally, future opportunities and challenges for the study and application of multifunctional high-performance MXenes are presented. This work could open up new prospects for the development of high-performance MXenes.

28 citations

Journal ArticleDOI
TL;DR: In this article , an energy-level-matched integrated photoelectrode with a 35.7% reduction in the reaction barrier based on electron-hole pair synergy under light irradiation was presented.
Abstract: Energy-level-matched integrated photoelectrode with a 35.7% (∼0.05 eV) reduction in the reaction barrier based on electron–hole pair synergy under light irradiation, the as-prepared hybrid device achieves a capacitance of ∼123.9 W h kg −1 in 3 A g −1 .

11 citations

Journal ArticleDOI
TL;DR: In this article , the authors proposed rechargeable batteries, as one of the attractive energy storage technologies integrating renewable resources, as a solution to the growing global energy demand and environmental damage are driving the pursuit of sustainable energy and storage technologies.
Abstract: Growing global energy demand and environmental damage are driving the pursuit of sustainable energy and storage technologies. Rechargeable batteries, as one of the attractive energy storage technologies integrating renewable resources,...

8 citations

Journal ArticleDOI
03 Jul 2022-Small
TL;DR: In this article , a review of photo-electrochemical (PEC) and redox batteries for large-scale solar energy capture, conversion, and storage is presented, where the matching problem of high-performance dye sensitizers, strategies to improve the performance of photoelectrode PEC, and the working mechanism and structure design of multi-energy photoelectronic integrated devices are analyzed.
Abstract: As an emerging solar energy utilization technology, solar redox batteries (SPRBs) combine the superior advantages of photoelectrochemical (PEC) devices and redox batteries and are considered as alternative candidates for large-scale solar energy capture, conversion, and storage. In this review, a systematic summary from three aspects, including: dye sensitizers, PEC properties, and photoelectronic integrated systems, based on the characteristics of rechargeable batteries and the advantages of photovoltaic technology, is presented. The matching problem of high-performance dye sensitizers, strategies to improve the performance of photoelectrode PEC, and the working mechanism and structure design of multienergy photoelectronic integrated devices are mainly introduced and analyzed. In particular, the devices and improvement strategies of high-performance electrode materials are analyzed from the perspective of different photoelectronic integrated devices (liquid-based and solid-state-based). Finally, future perspectives are provided for further improving the performance of SPRBs. This work will open up new prospects for the development of high-efficiency photoelectronic integrated batteries.

7 citations