scispace - formally typeset
Search or ask a question
Author

Biplab Bose

Bio: Biplab Bose is an academic researcher from Indian Institute of Technology Guwahati. The author has contributed to research in topics: Antibody & HBsAg. The author has an hindex of 8, co-authored 18 publications receiving 225 citations. Previous affiliations of Biplab Bose include All India Institute of Medical Sciences.
Topics: Antibody, HBsAg, Population, Diphtheria toxin, Antigen

Papers
More filters
Journal ArticleDOI
TL;DR: This work modified the existing statistical method to include the effects of intrinsic mutability of different regions of an antibody gene, and suggests that selection can act both for and against R mutations in the CDR as well as in the FR regions.
Abstract: The analysis of molecular signatures of antigen-driven affinity selection of B cells is of immense use in studies on normal and abnormal B cell development. Most of the published literature compares the expected and observed frequencies of replacement (R) and silent (S) mutations in the complementarity-determining regions (CDRs) and the framework regions (FRs) of antibody genes to identify the signature of antigenic selection. The basic assumption of this statistical method is that antigenic selection creates a bias for R mutations in the CDRs and for S mutations in the FRs. However, it has been argued that the differences in intrinsic mutability among different regions of an antibody gene can generate a statistically significant bias even in the absence of any antigenic selection. We have modified the existing statistical method to include the effects of intrinsic mutability of different regions of an antibody gene. We used this method to analyse sequences of several B cell-derived monoclonals against T-dependent antigens, T-independent antigens, clones derived from lymphoma and amyloidogenic clones. Our sequence analysis indicates that even after correcting for the intrinsic mutability of antibody genes, statistical parameters fail to reflect the role of antigen-driven affinity selection in maturation of many clones. We suggest that, contrary to the basic assumption of such statistical methods, selection can act both for and against R mutations in the CDR as well as in the FR regions. In addition we have identified different methodological difficulties in the current uses of such statistical analysis of antibody genes.

58 citations

Journal ArticleDOI
TL;DR: The phenotypic state transition during EGF-induced EMT in these cells is reversible, and depends upon the dose of EGF and level of phosphorylation of the EGF receptor (EGFR), and a simpler discretized energy-level model is proposed to explain the observed state transition dynamics.
Abstract: Epithelial to Mesenchymal Transition (EMT) is a multi-state process. Here, we investigated phenotypic state transition dynamics of Epidermal Growth Factor (EGF)-induced EMT in a breast cancer cell line MDA-MB-468. We have defined phenotypic states of these cells in terms of their morphologies and have shown that these cells have three distinct morphological states—cobble, spindle, and circular. The spindle and circular states are the migratory phenotypes. Using quantitative image analysis and mathematical modeling, we have deciphered state transition trajectories in different experimental conditions. This analysis shows that the phenotypic state transition during EGF-induced EMT in these cells is reversible, and depends upon the dose of EGF and level of phosphorylation of the EGF receptor (EGFR). The dominant reversible state transition trajectory in this system was cobble to circular to spindle to cobble. We have observed that there exists an ultrasensitive on/off switch involving phospho-EGFR that decides the transition of cells in and out of the circular state. In general, our observations can be explained by the conventional quasi-potential landscape model for phenotypic state transition. As an alternative to this model, we have proposed a simpler discretized energy-level model to explain the observed state transition dynamics.

42 citations

Journal ArticleDOI
TL;DR: Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics and the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising.

36 citations

Journal ArticleDOI
TL;DR: A comparison of the molecular models of the variable regions of the 5S antibody and its germ-line precursor revealed that critical mutations in the heavy and light chains interface resulted in better inter-chain packing and in the movement of CDR H3 and CDR L1 from their germline positions, which may be important for better antigen binding.

28 citations

Journal ArticleDOI
TL;DR: It is argued that systems theory provides required framework and abstractions to explore questions linked with organization of multiple components and processes in biology and systems biology should follow the logical and mathematical approach of systems theory.
Abstract: The debate over reductionism and antireductionism in biology is very old. Even the systems approach in biology is more than five decades old. However, mainstream biology, particularly experimental biology, has broadly sidestepped those debates and ideas. Post-genome data explosion and development of high-throughput techniques led to resurfacing of those ideas and debates as a new incarnation called Systems Biology. Though experimental biologists have co-opted systems biology and hailed it as a paradigm shift, it is practiced in different shades and understood with divergent meanings. Biology has certain questions linked with organization of multiple components and processes. Often such questions involve multilevel systems. Here in this essay we argue that systems theory provides required framework and abstractions to explore those questions. We argue that systems biology should follow the logical and mathematical approach of systems theory and transmogrification of systems biology to mere collection of higher dimensional data must be avoided. Therefore, the questions that we ask and the priority of those questions should also change. Systems biology should focus on system-level properties and investigate complexity without shying away from it.

17 citations


Cited by
More filters
01 Nov 2013
TL;DR: In this article, a review of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process is presented.
Abstract: Epithelial-mesenchymal transitions (EMTs) are a key requirement for cancer cells to metastasize and colonize in a new environment. Epithelial-mesenchymal plasticity is mediated by master transcription factors and is also subject to complex epigenetic regulation. This Review outlines our current understanding of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process. During the course of malignant cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, the extremes of which are defined by the expression of epithelial and mesenchymal phenotypes. This plasticity is enabled by underlying shifts in epigenetic regulation. A small cohort of pleiotropically acting transcription factors is widely recognized to effect these shifts by controlling the expression of a constituency of key target genes. These master regulators depend on complex epigenetic regulatory mechanisms, notably the induction of changes in the modifications of chromatin-associated histones, in order to achieve the widespread changes in gene expression observed during epithelial-mesenchymal transitions (EMTs). These associations indicate that an understanding of the functional interactions between such EMT-inducing transcription factors and the modulators of chromatin configuration will provide crucial insights into the fundamental mechanisms underlying cancer progression and may, in the longer term, generate new diagnostic and therapeutic modalities for treating high-grade malignancies.

797 citations

Journal ArticleDOI
25 Aug 2011-Blood
TL;DR: Light is shed on human germinal center-dependent and -independent B-cell memory formation and new opportunities to study these processes in immunologic diseases are provided.

343 citations

Journal ArticleDOI
TL;DR: The findings extend the memory B cell reservoir beyond the CD27+ compartment beyond the IgG+ blood B cells and could provide further insights into B cell disorders of unknown etiology.
Abstract: In humans, up to 40% of peripheral B cells express CD27 and have hypermutated variable regions in their Ig genes. The CD27+ B cells are considered to be derived from germinal center following specific antigenic stimulation. Actually, somatic hypermutation in Ig genes and CD27 expression are hallmarks of memory B cells. However, the blood IgM+IgD+CD27+ B cells were recently associated to splenic marginal zone B cells and proposed to be a subset distinct from germinal center-derived memory B cells showing premutated Igs. The results presented herein further weaken this bona fide association because B cells expressing surface IgG, but not CD27, were found in human blood. Representing 1–4% of all peripheral B cells and ∼25% of the IgG+ blood B cells, this population expressed mutated IgG genes showing antigenic selection characteristics but with lower mutation frequencies than that of CD27+IgG+ B cells. However, their morphology and phenotype were similar to that of CD27+IgG+ cells. Interestingly, the proportion of IgG2 over IgG3 transcripts was opposite in CD27−IgG+ and CD27+IgG+ cells, suggesting distinct functions or origins. Overall, these findings extend the memory B cell reservoir beyond the CD27+ compartment and could provide further insights into B cell disorders of unknown etiology.

297 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in more than half of a cohort of 68 lupus nephritis biopsies, the tubulointerstitial infiltrate was organized into well-circumscribed T:B cell aggregates or germinal centers (GCs) containing follicular dendritic cells.
Abstract: The most prevalent severe manifestation of systemic lupus erythematosus is nephritis, which is characterized by immune complex deposition, inflammation, and scarring in glomeruli and the tubulointerstitium. Numerous studies indicated that glomerulonephritis results from a systemic break in B cell tolerance, resulting in the local deposition of immune complexes containing Abs reactive with ubiquitous self-Ags. However, the pathogenesis of systemic lupus erythematosus tubulointerstitial disease is not known. In this article, we demonstrate that in more than half of a cohort of 68 lupus nephritis biopsies, the tubulointerstitial infiltrate was organized into well-circumscribed T:B cell aggregates or germinal centers (GCs) containing follicular dendritic cells. Sampling of the in situ-expressed Ig repertoire revealed that both histological patterns were associated with intrarenal B cell clonal expansion and ongoing somatic hypermutation. However, in the GC histology, the proliferating cells were CD138(-)CD20(+) centroblasts, whereas they were CD138(+)CD20(low/-) plasmablasts in T:B aggregates. The presence of GCs or T:B aggregates was strongly associated with tubular basement membrane immune complexes. These data implicate tertiary lymphoid neogenesis in the pathogenesis of lupus tubulointerstitial inflammation.

277 citations

Journal ArticleDOI
TL;DR: Novel trivalent antibodies have been developed to maximize tumor targeting capabilities through enhanced biodistribution and functional affinity and further discuss their promise as agents for in vivo diagnostics and therapy.

267 citations