scispace - formally typeset
Search or ask a question
Author

Biplab Sikdar

Bio: Biplab Sikdar is an academic researcher from National University of Singapore. The author has contributed to research in topics: Network packet & Computer science. The author has an hindex of 37, co-authored 234 publications receiving 5466 citations. Previous affiliations of Biplab Sikdar include Rensselaer Polytechnic Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed review of the security-related challenges and sources of threat in the IoT applications is presented and four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.
Abstract: The Internet of Things (IoT) is the next era of communication. Using the IoT, physical objects can be empowered to create, receive, and exchange data in a seamless manner. Various IoT applications focus on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. The existing and upcoming IoT applications are highly promising to increase the level of comfort, efficiency, and automation for the users. To be able to implement such a world in an ever-growing fashion requires high security, privacy, authentication, and recovery from attacks. In this regard, it is imperative to make the required changes in the architecture of the IoT applications for achieving end-to-end secure IoT environments. In this paper, a detailed review of the security-related challenges and sources of threat in the IoT applications is presented. After discussing the security issues, various emerging and existing technologies focused on achieving a high degree of trust in the IoT applications are discussed. Four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.

800 citations

Proceedings ArticleDOI
11 May 2003
TL;DR: The proposed protocol, Distributed Predictive Tracking, is robust against node or prediction failures which may result in temporary loss of the target and recovers from such scenarios quickly and with very little additional energy use.
Abstract: With recent advances in device fabrication technology, economical deployment of large scale sensor networks, capable of pervasive monitoring and control of physical systems have become possible. Scalability, low overhead anti distributed functionality are some of the key requirements for any protocol designed for such large scale sensor networks. In this paper, we present a protocol, Distributed Predictive Tracking, for one of the most likely applications for sensor networks: tracking moving targets. The protocol uses a clustering based approach for scalability and a prediction based tracking mechanism to provide a distributed and energy efficient solution. The protocol is robust against node or prediction failures which may result in temporary loss of the target and recovers from such scenarios quickly and with very little additional energy use. Using simulations we show that the proposed architecture is able to accurately track targets with random movement patterns with accuracy over a wide range of target speeds.

369 citations

Proceedings ArticleDOI
07 Mar 2004
TL;DR: An analytic model for evaluating the queueing delays at nodes in an IEEE 802.11 MAC based wireless network is presented and can be used for providing probabilistic quality of service guarantees and determining the number of nodes that can be accommodated while satisfying a given delay constraint.
Abstract: We present an analytic model for evaluating the queueing delays at nodes in an IEEE 802.11 MAC based wireless network. The model can account for arbitrary arrival patterns, packet size distributions and number of nodes. Our model gives closed form expressions for obtaining the delay and queue length characteristics. We model each node as a discrete time G/G/1 queue and derive the service time distribution while accounting for a number of factors including the channel access delay due to the shared medium, impact of packet collisions, the resulting backoffs as well as the packet size distribution. The model is also extended for ongoing proposals under consideration for 802.11e wherein a number of packets may be transmitted in a burst once the channel is accessed. Our analytical results are verified through extensive simulations. The results of our model can also be used for providing probabilistic quality of service guarantees and determining the number of nodes that can be accommodated while satisfying a given delay constraint.

311 citations

Journal ArticleDOI
TL;DR: This paper presents a lightweight and privacy-preserving two-factor authentication scheme for IoT devices, where physically uncloneable functions have been considered as one of the authentication factors and is very efficient in terms of computational efficiently.
Abstract: Device authentication is an essential security feature for Internet of Things (IoT). Many IoT devices are deployed in the open and public places, which makes them vulnerable to physical and cloning attacks. Therefore, any authentication protocol designed for IoT devices should be robust even in cases when an IoT device is captured by an adversary. Moreover, many of the IoT devices have limited storage and computational capabilities. Hence, it is desirable that the security solutions for IoT devices should be computationally efficient. To address all these requirements, in this paper, we present a lightweight and privacy-preserving two-factor authentication scheme for IoT devices, where physically uncloneable functions have been considered as one of the authentication factors. Security and performance analysis show that our proposed scheme is not only robust against several attacks, but also very efficient in terms of computational efficiently.

255 citations

Journal ArticleDOI
TL;DR: A survey of the requirements, technical challenges, and existing work on medium access control (MAC) layer protocols for supporting M2M communications is presented.
Abstract: With the growing interest in the use of autonomous computing, sensing and actuating devices for various applications such as smart grids, home networking, smart environments and cities, health care, and machine-to-machine (M2M) communication has become an important networking paradigm. However, in order to fully exploit the applications facilitated by M2M communications, adequate support from all layers in the network stack must first be provided in order to meet their service requirements. This paper presents a survey of the requirements, technical challenges, and existing work on medium access control (MAC) layer protocols for supporting M2M communications. This paper first describes the issues related to efficient, scalable, and fair channel access for M2M communications. Then, in addition to protocols that have been developed specifically for M2M communications, this paper reviews existing MAC protocols and their applicability to M2M communications. This survey paper then discusses ongoing standardization efforts and open problems for future research in this area.

236 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
03 Nov 2004
TL;DR: The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update and comprehensive error compensation including clock skew estimation, which is markedly better than that of the existing RBS and TPSN algorithms.
Abstract: Wireless sensor network applications, similarly to other distributed systems, often require a scalable time synchronization service enabling data consistency and coordination. This paper describes the Flooding Time Synchronization Protocol (FTSP), especially tailored for applications requiring stringent precision on resource limited wireless platforms. The proposed time synchronization protocol uses low communication bandwidth and it is robust against node and link failures. The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update. The unique high precision performance is reached by utilizing MAC-layer time-stamping and comprehensive error compensation including clock skew estimation. The sources of delays and uncertainties in message transmission are analyzed in detail and techniques are presented to mitigate their effects. The FTSP was implemented on the Berkeley Mica2 platform and evaluated in a 60-node, multi-hop setup. The average per-hop synchronization error was in the one microsecond range, which is markedly better than that of the existing RBS and TPSN algorithms.

2,267 citations

Journal ArticleDOI
TL;DR: In this article, applied linear regression models are used for linear regression in the context of quality control in quality control systems, and the results show that linear regression is effective in many applications.
Abstract: (1991). Applied Linear Regression Models. Journal of Quality Technology: Vol. 23, No. 1, pp. 76-77.

1,811 citations