scispace - formally typeset
Search or ask a question
Author

Bir Bahadur

Bio: Bir Bahadur is an academic researcher from Kakatiya University. The author has contributed to research in topics: Jatropha & Jatropha curcas. The author has an hindex of 7, co-authored 25 publications receiving 152 citations.
Topics: Jatropha, Jatropha curcas, Genus, Pollinator, Nectar

Papers
More filters
BookDOI
01 Jan 2015
TL;DR: A comprehensive compilation of genomic structure evolution that should help the reader who is not familiar with genomics to understand the mechanisms that are shaping its structures over time and give a constructive view of the life journey to the reader.
Abstract: We present a comprehensive compilation of genomic structure evolution that should help the reader who is not familiar with genomics to understand the mechanisms that are shaping its structures over time. We believe that this understanding is essential to work with genomics in the sense that it should help to formulate productive hypothesis for new original works. We believe that the mechanism by which the extant genomic structures arose is more important than the shape of these structures since evolution is continuously at work. In addition, taking genomics under the evolution perspective gives the possibility to release a unifi ed picture of its unlimited natural complexity to the reader without fair to be incomplete. It is amazing to realize how fast complex biological structures arose in the early time of Earth, and it has been our aim to try to give a constructive view of the life journey to the reader.

34 citations

Book
01 Jan 2015
TL;DR: This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology.
Abstract: Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology

14 citations

Book ChapterDOI
01 Jan 2015
TL;DR: This chapter has tried to highlight the epigenetic mechanisms that play key roles in plants, including DNA methylation, histone modifications, and RNA interference.
Abstract: Plant epigenetics has become one of the hottest topics of research not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. In addition, epigenetic mechanisms are also crucial to appropriate plant reactions to stress. Given the sessile lifestyle and the late differentiation of the germ line, plants can perceive stresses during vegetative growth and also memorize them, possibly by epigenetic mechanisms. Plants use three systems to initiate and regulate epigenetic gene regulation, like other higher organisms, which include DNA methylation, histone modifications, and RNA interference. New concepts are being evolved to show how these epigenetic components interact and stabilize each other. The role of epigenetic mechanisms in hybrid vigor and epigenetic transgene silencing is also being explored. In this chapter, we have tried to highlight the epigenetic mechanisms that play key roles in plants.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: During the course of evolution, secretory tissues seem to have developed from secretory idioblasts scattered among the cells of the ordinary tissues, such as ducts and cavities developed and finally secretory trichomes.
Abstract: SUMMARY Secretory tissues occur in most vascular plants. Some of these tissues, such as hydathodes, salt glands and nectaries, secrete unmodified or only slightly modified substances supplied directly or indirectly by the vascular tissues. Other tissues secreting, for instance, polysaccharides, proteins and lipophilic material, produce these substances in their cells. The cells of secretory tissues usually contain numerous mitochondria. The frequency of other cell organelles varies according to the material secreted. In most glandular trichomes the side wall of the lowest stalk cell is completely cutinized. This prevents the secreted material from flowing back into the plant. The salt glands in Atriplex eliminate salt into the central vacuole of the bladder cell but, in other plants, the glands secrete salt to the outside. Different views exist as to the manner in which salt is eliminated from the cytoplasm. According to some authors, the mode of elimination is an eccrine one, while others suggest the involvement of membrane-bound vesicles. Nectar is of phloem origin. The pre-nectar moves to the secretory cells through numerous plasmodesmata present in the nectariferous tissue. Nectar is eliminated from the secretory cells by vesicles of either KR or dictyosomal origin. In some cases, both organelles may be involved but an eccrine mode of nectar secretion has also been suggested by some authors. Carbohydrate mucilages and gums are synthesized by dictyosomes but virtually every cell compartment has been suggested as having a role on the secretion of lipophilic substances. Most commonly, plastids are implicated in the synthesis of lipophilic materials but KR may also play a part. In some cases lipophilic materials may be transported towards the plasmalemma in the KR. Resin and gum ducts of some plants develop normally or in response to external stimuli, such as microorganisms or growth substances. Among the latter, ethylene is the most effective. During the course of evolution, secretory tissues seem to have developed from secretory idioblasts scattered among the cells of the ordinary tissues. Subsequently ducts and cavities developed and finally secretory trichomes.

599 citations

Journal ArticleDOI
TL;DR: It is hoped that the proposed introgressiomics approach will contribute to the development of a new generation of cultivars with dramatically improved yield and performance that may allow coping with the environmental changes caused by climate change while at the same time contributing to a more efficient and sustainable agriculture.
Abstract: The need to boost agricultural production in the coming decades in a climate change scenario requires new approaches for the development of new crop varieties that are more resilient and more efficient in the use of resources. Crop wild relatives (CWRs) are a source of variation for many traits of interest in breeding, in particular tolerance to abiotic and biotic stresses. However, their potential in plant breeding has largely remained unexploited. CWRs can make an effective contribution to broadening the genetic base of crops and to introgressing traits of interest, but their direct use by breeders in breeding programs is usually not feasible due to the presence of undesirable traits in CWRs (linkage drag) and frequent breeding barriers with the crop. Here we call for a new approach, which we tentatively call ‘introgressiomics’, which consists of mass scale development of plant materials and populations with introgressions from CWRs into the genetic background of crops. Introgressiomics is a form of pre-emptive breeding and can be focused, when looking for specific phenotypes, or un-focused, when it is aimed at creating highly diverse introgressed populations. Exploring germplasm collections and identifying adequate species and accessions from different genepools encompassing a high diversity, using different strategies like the creation of germplasm diversity sets, Focused identification of germplasm strategy (FIGS) or gap analysis, is a first step in introgressiomics. Interspecific hybridization and backcrossing is often a major barrier for introgressiomics, but a number of techniques can be used to potentially overcome these and produce introgression populations. The generation of chromosome substitution lines (CSLs), introgression lines (ILs), or multi-parent advanced inter-cross (MAGIC) populations by means of marker-assisted selection allows not only the genetic analysis of traits present in CWRs, but also developing genetically characterized elite materials that can be easily incorporated in breeding programs. Genomic tools, in particular high-throughput molecular markers, facilitate the characterization and development of introgressiomics populations, while new plant breeding techniques (NPBTs) can enhance the introgression and use of genes from CWRs in the genetic background of crops. An efficient use of introgressiomics populations requires moving the materials into breeding pipelines. In this respect public–private partnerships (PPPs) can contribute to an increased use of introgressed materials by breeders. We hope that the introgressiomics approach will contribute to the development of a new generation of cultivars with dramatically improved yield and performance that may allow coping with the environmental changes caused by climate change while at the same time contributing to a more efficient and sustainable agriculture.

141 citations

Journal ArticleDOI
14 Feb 2021-Cells
TL;DR: In this article, the level of nitrogen and phosphorus required for microalgae cultivation and the benefits of using these nutrients for increasing the biomass productivity of micro-algae for improved lipid and fatty acid quantities.
Abstract: Microalgae can be used as a source of alternative food, animal feed, biofuel, fertilizer, cosmetics, nutraceuticals and for pharmaceutical purposes. The extraction of organic constituents from microalgae cultivated in the different nutrient compositions is influenced by microalgal growth rates, biomass yield and nutritional content in terms of lipid and fatty acid production. In this context, nutrient composition plays an important role in microalgae cultivation, and depletion and excessive sources of this nutrient might affect the quality of biomass. Investigation on the role of nitrogen and phosphorus, which are crucial for the growth of algae, has been addressed. However, there are challenges for enhancing nutrient utilization efficiently for large scale microalgae cultivation. Hence, this study aims to highlight the level of nitrogen and phosphorus required for microalgae cultivation and focuses on the benefits of nitrogen and phosphorus for increasing biomass productivity of microalgae for improved lipid and fatty acid quantities. Furthermore, the suitable extraction methods that can be used to utilize lipid and fatty acids from microalgae for biofuel have also been reviewed.

127 citations