scispace - formally typeset
Search or ask a question
Author

Birbal Singh

Bio: Birbal Singh is an academic researcher from Indian Veterinary Research Institute. The author has contributed to research in topics: TEC & Stem cell. The author has an hindex of 14, co-authored 124 publications receiving 1149 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present paper reviews the mechanisms of action of anti-cholesterolemic potential of probiotic microorganisms and probiotic food products, with the aim of lowering the risks of cardiovascular and coronary heart diseases.
Abstract: Cardiovascular diseases are one of the major causes of deaths in adults in the western world. Elevated levels of certain blood lipids have been reported to be the principal cause of cardiovascular disease and other disabilities in developed countries. Several animal and clinical trials have shown a positive association between cholesterol levels and the risks of coronary heart disease. Current dietary strategies for the prevention of cardiovascular disease advocate adherence to low-fat/low-saturated-fat diets. Although there is no doubt that, in experimental conditions, low-fat diets offer an effective means of reducing blood cholesterol concentrations on a population basis, these appear to be less effective, largely due to poor compliance, attributed to low palatability and acceptability of these diets to the consumers. Due to the low consumer compliance, attempts have been made to identify other dietary components that can reduce blood cholesterol levels. Supplementation of diet with fermented dairy products or lactic acid bacteria containing dairy products has shown the potential to reduce serum cholesterol levels. Various approaches have been used to alleviate this issue, including the use of probiotics, especially Bifidobacterium spp. and Lactobacillus spp.. Probiotics, the living microorganisms that confer health benefits on the host when administered in adequate amounts, have received much attention on their proclaimed health benefits which include improvement in lactose intolerance, increase in natural resistance to infectious disease in gastrointestinal tract, suppression of cancer, antidiabetic, reduction in serum cholesterol level, and improved digestion. In addition, there are numerous reports on cholesterol removal ability of probiotics and their hypocholesterolemic effects. Several possible mechanisms for cholesterol removal by probiotics are assimilation of cholesterol by growing cells, binding of cholesterol to cellular surface, incorporation of cholesterol into the cellular membrane, deconjugation of bile via bile salt hydrolase, coprecipitation of cholesterol with deconjugated bile, binding action of bile by fibre, and production of short-chain fatty acids by oligosaccharides. The present paper reviews the mechanisms of action of anti-cholesterolemic potential of probiotic microorganisms and probiotic food products, with the aim of lowering the risks of cardiovascular and coronary heart diseases.

347 citations

Journal ArticleDOI
TL;DR: The recent upsurge of interest in this area of research and advances made therein indicate that the impact of a number of diseases affecting humans and animals may be lessened, if not prevented, by simple dietary intake of PSMs with putative therapeutic properties.
Abstract: Plant-based formulations have been used since ancient times as remedial measures against various human and animal ailments. Over the past 20 years interest in traditional medicines has increased considerably in many parts of the world. Whereas modifications in lifestyles, including diet, have had a profound effect on the increased risks of various diseases, there is considerable scientific evidence, both epidemiological and experimental, regarding vegetables and fruits as key features of diets associated with reduced risks of diseases such as cancers and infections. This has led to the use of a number of phytometabolites as anticarcinogenic and cardioprotective agents, promoting a dramatic increase in their consumption as dietary supplements. There are changing perceptions regarding the therapeutic potential of various plant secondary metabolites (PSMs), some of which have also been known to possess certain antinutritional qualities. The knowledge gained at the cellular and molecular levels, and biologica...

249 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the present scenario of increasing antimicrobial-resistance in pathogenic bacteria and the clinical importance of unconventional or non-antibiotic therapies to thwart the infectious pathogenic microorganisms.
Abstract: The looming problem of resistance to antibiotics in microorganisms is a global health concern. The drug-resistant microorganisms originating from anthropogenic sources and commercial livestock farming have posed serious environmental and health challenges. Antibiotic-resistant genes constituting the environmental "resistome" get transferred to human and veterinary pathogens. Hence, deciphering the origin, mechanism and extreme of transfer of these genetic factors into pathogens is extremely important to develop not only the therapeutic interventions to curtail the infections, but also the strategies to avert the menace of microbial drug-resistance. Clinicians, researchers and policymakers should jointly come up to develop the strategies to prevent superfluous exposure of pathogens to antibiotics in non-clinical settings. This article highlights the present scenario of increasing antimicrobial-resistance in pathogenic bacteria and the clinical importance of unconventional or non-antibiotic therapies to thwart the infectious pathogenic microorganisms.

64 citations

Journal ArticleDOI
TL;DR: The present investigation was carried out for increasing the yield of tannase of Aspergillus niger and the physico‐chemical characterization of this enzyme, and tannic acid was the best substrate for three substrates tested, followed by methyl gallate and propyl gallate.
Abstract: The present investigation was carried out for increasing the yield of tannase of Aspergillus niger and the physico-chemical characterization of this enzyme. the extraction of enzyme protein. However, extraction of fungal pigments and proteins was observed to have high pH dependence, and maximum enzyme extraction was obtained at pH 5.5. The two-step purification protocol gave 51-fold purified enzyme with a yield of 20%. The total tannase activity was made up of nearly equal activity of esterase and depsidase. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of purified tannase protein indicated it to be made up of two polypeptides of molecular weight 102 and 83 kDa. Based on the Michaelis-Menten constant (Km) of tannase for three substrates tested, tannic acid was the best substrate with Km of 2.8 x 10(-4) M, followed by methyl gallate and propyl gallate. The inhibition was maximum for CaCl2 (58%) whereas EDTA had no modulatory effect on tannase activity. The inhibitor binding constant (KI) of CaCl2 was 5.9 x 10(-4) M Homogenization and detergent pretreatments did not have any remarkable effect on and the inhibition was of noncompetitive type.

62 citations

Journal ArticleDOI
TL;DR: A cohesive and an integrated detanninification strategy is required for alleviating the antinutritional effects of tannins in animals and upgrading the feeding value of tANNiniferous biomass.
Abstract: Tannins are one of the important plant secondary metabolites having wide prevalence in the plant kingdom. They are a prominent constituent of various types of feed, fodder and agro-industrial wastes. The intake of tannins at a low level has recently been found to have some positive effects in ruminants. However, the use of tannin-rich biomass as animal feed, having high content of tannins, is limited by the antinutritional effects of tannins at this level in an animal system. A number of physical, chemical, biological and miscellaneous approaches have been developed for inactivation or removal of tannins for enhancement of the feeding value of tannin-rich biomass. However, none of the individual method is successful in total inactivation or removal of tannins without loss of nutritive value, and this limits the utilization of a vast amount of plant resource. A cohesive and an integrated detanninification strategy is required for alleviating the antinutritional effects of tannins in animals and upgrading the feeding value of tanniniferous biomass.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: These properties suggest that postbiotics may contribute, to the improvement of host health by improving specific physiological functions, even though the exact mechanisms have not been entirely elucidated.
Abstract: Background It has been recognized that a number of mechanisms mediating the health benefits of beneficial bacterial cells do require viability. However, new terms such as paraprobiotic or postbiotic have emerged to denote that non-viable microbial cells, microbial fractions, or cell lysates might also offer physiological benefits to the host by providing additional bioactivity. Scope and approach This review provides an overview of the postbiotic concept, evidence of their health benefits and possible signaling pathways involved in their protective effects, as well as perspectives for applications in foods and pharmaceuticals. Key findings and conclusions Postbiotics refers to soluble factors (products or metabolic byproducts), secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell surface proteins, and organic acids. These postbiotics have drawn attention because of their clear chemical structure, safety dose parameters, long shelf life and the content of various signaling molecules which may have anti-inflammatory, immunomodulatory, anti-obesogenic, antihypertensive, hypocholesterolemic, anti-proliferative, and antioxidant activities. These properties suggest that postbiotics may contribute, to the improvement of host health by improving specific physiological functions, even though the exact mechanisms have not been entirely elucidated.

429 citations

Journal ArticleDOI
01 Oct 2007-Animal
TL;DR: The effects of various phytochemicals and plant secondary metabolites in ruminant and fish species are discussed and some challenges and future areas of work in this field are presented.
Abstract: Livestock and aquaculture production is under political and social pressure, especially in the European Union (EU), to decrease pollution and environmental damage arising due to animal agriculture. The EU has banned the use of antibiotics and other chemicals, which have been shown to be effective in promoting growth and reducing environment pollutants because of the risk caused to humans by chemical residues in food and by antibiotic resistance being passed on to human pathogens. As a result of this, scientists have intensified efforts in exploiting plants, plant extracts or natural plant compounds as potential natural alternatives for enhancing the livestock productivity. This paper discusses work on the effects of various phytochemicals and plant secondary metabolites in ruminant and fish species. The focus is on (i) plants such as Ananas comosus (pine apple), Momordica charantia (bitter gourd) and Azadirachta indica (neem) containing anthelmintic compounds and for their use for controlling internal parasites; (ii) plants containing polyphenols and their applications for protecting proteins from degradation in the rumen, increasing efficiency of microbial protein synthesis in rumen and decreasing methane emission; for using as antioxidants, antibacterial and antihelmintic agents; and for changing meat colour and for increasing n-3 fatty acids and conjugated linoleic acid in meat; (iii) saponin-rich plants such as quillaja, yucca and Sapindus saponaria for increasing the efficiency of rumen fermentation, decreasing methane emission and enhancing growth; for producing desired nutritional attributes such as lowering of cholesterol in monogastric animals; for increasing growth of fish (common carp and Nile tilapia) and for changing male to female ratio in tilapia; and for use as molluscicidal agents; (iv) Moringa oleifera leaves as a source of plant growth factor(s), antioxidants, beta-carotene, vitamin C, and various glucosinolates and their degraded products for possible use as antibacterial, antioxidant, anticarcinogenic and antipest agents; (v) Jatropha curcas toxic variety with high levels of various phytochemicals such as trypsin inhibitor, lectin, phytate and phorbol esters in seeds limiting the use of seed meal in fish and livestock diets; and the use of phorbol esters as bio-pesticidal agent; and (vi) lesser-known legumes such as Entada phaseoloides seeds containing high levels of trypsin inhibitor and saponins, Sesbania aculeate seeds rich in non-starch polysaccharides and Mucuna pruriens var. utilis seeds rich in l-3,4-dihydroxyphenylalanine and their potential as fish feed; Cassia fistula seeds as a source of antioxidants; and the use of Canavalia ensiformis, C. gladiata and C. virosa seeds containing high levels of trypsin inhinitor, lectins and canavanine. The paper also presents some challenges and future areas of work in this field.

417 citations

Journal ArticleDOI
TL;DR: Specific bile resistance mechanisms are reviewed and discussed, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile.
Abstract: Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile.

362 citations

Journal ArticleDOI
TL;DR: The ICE (Instrument Champ Electrique) experiment on board DEMETER is to provide a nearly continuous survey of the electromagnetic and/or electrostatic waves that may arise from the coupling of seismic activity with the upper atmosphere and ionosphere as discussed by the authors.

316 citations

Journal ArticleDOI
TL;DR: In this paper, a review highlights the specific features of the Jatropha curcas plant and its potential for the production of biofuel, protein concentrates as livestock feed and value-added products that could enhance the economic viability of the plant in carbon capture, enhancing socioeconomic conditions, food production in the tropical regions and influencing microclimate, vegetation and soil quality.
Abstract: The review highlights the specific features of the Jatropha curcas plant and its potential for the production of biofuel, protein concentrates as livestock feed and value-added products that could enhance the economic viability of Jatropha seed oil-based biodiesel production. The roles of the plant in carbon capture, enhancing socio-economic conditions, food production in the tropical regions, and influencing microclimate, vegetation and soil quality are discussed. The paper also gives a comparative account of the toxic and non-toxic genotypes of J. curcas from the point of view of their physical and chemical properties and their potential for biodiesel and livestock feed production. Future areas of research are also presented.

299 citations