scispace - formally typeset
Search or ask a question
Author

Birgit Kucera

Bio: Birgit Kucera is an academic researcher from University of Freiburg. The author has contributed to research in topics: Endosperm & Germination. The author has an hindex of 3, co-authored 4 publications receiving 1122 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids, auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination.
Abstract: This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids (BR), auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination. Signal transduction pathways, mediated by environmental and hormonal signals, regulate gene expression in seeds. Seed dormancy release and germination of species with coat dormancy is determined by the balance of forces between the growth potential of the embryo and the constraint exerted by the covering layers, e.g. testa and endosperm. Recent progress in the field of seed biology has been greatly aided by molecular approaches utilizing mutant and transgenic seeds of Arabidopsis thaliana and the Solanaceae model systems, tomato and tobacco, which are altered in hormone biology. ABA is a positive regulator of dormancy induction and most likely also maintenance, while it is a negative regulator of germination. GA releases dormancy, promotes germination and counteracts ABA effects. Ethylene and BR promote seed germination and also counteract ABA effects. We present an integrated view of the molecular genetics, physiology and biochemistry used to unravel how hormones control seed dormancy release and germination.

1,006 citations

Journal ArticleDOI
TL;DR: The results support the proposal that different seed tissues and organs hydrate at different extents and that the micropylar endosperm region of tobacco acts as a water reservoir for the embryo.
Abstract: The regulation of water uptake of germinating tobacco (Nicotiana tabacum) seeds was studied spatially and temporally by in vivo 1H-nuclear magnetic resonance (NMR) microimaging and 1H-magic angle spinning NMR spectroscopy. These nondestructive state-of-the-art methods showed that water distribution in the water uptake phases II and III is inhomogeneous. The micropylar seed end is the major entry point of water. The micropylar endosperm and the radicle show the highest hydration. Germination of tobacco follows a distinct pattern of events: rupture of the testa is followed by rupture of the endosperm. Abscisic acid (ABA) specifically inhibits endosperm rupture and phase III water uptake, but does not alter the spatial and temporal pattern of phase I and II water uptake. Testa rupture was associated with an increase in water uptake due to initial embryo elongation, which was not inhibited by ABA. Overexpression of β-1,3-glucanase in the seed-covering layers of transgenic tobacco seeds did not alter the moisture sorption isotherms or the spatial pattern of water uptake during imbibition, but partially reverted the ABA inhibition of phase III water uptake and of endosperm rupture. In vivo 13C-magic angle spinning NMR spectroscopy showed that seed oil mobilization is not inhibited by ABA. ABA therefore does not inhibit germination by preventing oil mobilization or by decreasing the water-holding capacity of the micropylar endosperm and the radicle. Our results support the proposal that different seed tissues and organs hydrate at different extents and that the micropylar endosperm region of tobacco acts as a water reservoir for the embryo.

192 citations

Journal ArticleDOI
TL;DR: UV induction of the flavonoid pathway shows no correlation with DNA damage and thus should be mediated via a different signal transduction pathway, and the induction of flavonoids in bean leaves was optimally triggered by much more moderate fluences from the UV wavelength range no longer effective in βGlu I induction.
Abstract: The enzyme beta-1,3-glucanase (betaGlu) was found to be strongly induced by ultraviolet (UV-B; 280-320 nm) radiation in primary leaves of French bean (Phaseolus vulgaris). This was demonstrated on the level of gene transcription, protein synthesis, and enzyme activity and was due to the expression of bean class I betaGlu (betaGlu I). In contrast to other proteins of the family of pathogenesis-related proteins, the induction of betaGlu I by UV correlated with the formation of photoreversible DNA damage, i.e. pyrimidine dimer formation. In conditions that allowed photorepair of this damage, betaGlu I induction was blocked. Therefore, UV-induced DNA damage seems to constitute a primary signal in the pathway leading to the induction of the betaGlu I gene(s). The induction was a local response because in partly irradiated leaves betaGlu I was selectively found in leaf parts exposed to UV. Although short wavelength UV (lambda 295 nm) as present in natural radiation was still effective. In contrast to UV induction of betaGlu I, the induction of flavonoids in bean leaves was optimally triggered by much more moderate fluences from the UV wavelength range no longer effective in betaGlu I induction. UV induction of the flavonoid pathway shows no correlation with DNA damage and thus should be mediated via a different signal transduction pathway.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that adaptation has taken place on a theme rather than via fundamentally different paths and similarities underlying the extensive diversity in the dormancy response to the environment that controls germination are identified.
Abstract: Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.

2,411 citations

Journal ArticleDOI
TL;DR: The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant, and this mechanism leads to the concept of 'competent' endophytes, defined asendophytes that are equipped with genes important for maintenance of plant-endophyte associations.

1,339 citations

Journal ArticleDOI
TL;DR: This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids, auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination.
Abstract: This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids (BR), auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination. Signal transduction pathways, mediated by environmental and hormonal signals, regulate gene expression in seeds. Seed dormancy release and germination of species with coat dormancy is determined by the balance of forces between the growth potential of the embryo and the constraint exerted by the covering layers, e.g. testa and endosperm. Recent progress in the field of seed biology has been greatly aided by molecular approaches utilizing mutant and transgenic seeds of Arabidopsis thaliana and the Solanaceae model systems, tomato and tobacco, which are altered in hormone biology. ABA is a positive regulator of dormancy induction and most likely also maintenance, while it is a negative regulator of germination. GA releases dormancy, promotes germination and counteracts ABA effects. Ethylene and BR promote seed germination and also counteract ABA effects. We present an integrated view of the molecular genetics, physiology and biochemistry used to unravel how hormones control seed dormancy release and germination.

1,006 citations

Journal ArticleDOI
TL;DR: Current knowledge of the molecular control of this trait in Arabidopsis thaliana is presented, focussing on important components functioning during the developmental phases of seed maturation, after-ripening and imbibition.
Abstract: The transition between dormancy and germination represents a critical stage in the life cycle of higher plants and is an important ecological and commercial trait. In this review we present current knowledge of the molecular control of this trait in Arabidopsis thaliana, focussing on important components functioning during the developmental phases of seed maturation, after-ripening and imbibition. Establishment of dormancy during seed maturation is regulated by networks of transcription factors with overlapping and discrete functions. Following desiccation, after-ripening determines germination potential and, surprisingly, recent observations suggest that transcriptional and post-transcriptional processes occur in the dry seed. The single-cell endosperm layer that surrounds the embryo plays a crucial role in the maintenance of dormancy, and transcriptomics approaches are beginning to uncover endosperm-specific genes and processes. Molecular genetic approaches have provided many new components of hormone signalling pathways, but also indicate the importance of hormone-independent pathways and of natural variation in key regulatory loci. The influence of environmental signals (particularly light) following after-ripening, and the effect of moist chilling (stratification) are increasingly being understood at the molecular level. Combined postgenomics, physiology and molecular genetics approaches are beginning to provide an unparalleled understanding of the molecular processes underlying dormancy and germination.

831 citations

Journal ArticleDOI
TL;DR: It is highlighted that germination vigor depends on multiple biochemical and molecular variables and their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Abstract: Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using “-omics” approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

787 citations