scispace - formally typeset
Search or ask a question
Author

Birgit Ledermann

Other affiliations: Novartis
Bio: Birgit Ledermann is an academic researcher from University of Zurich. The author has contributed to research in topics: Embryonic stem cell & Stem cell. The author has an hindex of 35, co-authored 41 publications receiving 10771 citations. Previous affiliations of Birgit Ledermann include Novartis.

Papers
More filters
Journal ArticleDOI
05 May 1994-Nature
TL;DR: Perforin-deficient mice have been generated by homologous recombination to determine whether the effects of CDS+ cytolytic T cells and natural killer cells are mediated by pore formation involving perform, and perforin is therefore a key effector molecule for T-cell- and natural Killer- cell-mediated cy tolysis.
Abstract: Perforin-deficient mice have been generated by homologous recombination to determine whether the effects of CD8+ cytolytic T cells and natural killer cells are mediated by pore formation involving perforin. These mice are viable and fertile and have normal numbers of CD8+ T cells and natural killer cells which do not lyse virus-infected or allogeneic fibroblasts or natural killer target cells in vitro. The mice fail to clear lymphocytic choriomeningitis virus and they eliminate fibrosarcoma tumour cells with reduced efficiency. Perforin is therefore a key effector molecule for T-cell- and natural killer-cell-mediated cytolysis.

1,785 citations

Journal ArticleDOI
22 Jul 1994-Science
TL;DR: The perforin- and Fas-based mechanisms may account for all T cell-mediated cytotoxicity in short-term in vitro assays, and no third mechanism was detected.
Abstract: Two molecular mechanisms of T cell-mediated cytotoxicity, one perforin-based, the other Fas-based, have been demonstrated. To determine the extent of their contribution to T cell-mediated cytotoxicity, a range of effector cells from normal control or perforin-deficient mice were tested against a panel of target cells with various levels of Fas expression. All cytotoxicity observed was due to either of these mechanisms, and no third mechanism was detected. Thus, the perforin- and Fas-based mechanisms may account for all T cell-mediated cytotoxicity in short-term in vitro assays.

1,587 citations

Journal ArticleDOI
TL;DR: These mice resemble major features of AD pathology and suggest a central role of A beta in the pathogenesis of the disease.
Abstract: Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.

1,497 citations

Journal ArticleDOI
TL;DR: Evidence for a role of Fas-dependent cytotoxicity as a T cell effector mechanism in vivo is lacking, and current data suggest that the main function of Fas may be in regulation of the immune response and apparently less at the level of an effector mechanisms in host defense.
Abstract: Studies with perforin-deficient mice have demonstrated that two independent mechanisms account for T cell–mediated cytotoxicity: A main pathway is mediated by the secretion of the pore-forming protein perforin by the cytotoxic T cell, whereas an alternative nonsecretory pathway relies on the interaction of the Fas ligand that is upregulated during T cell activation with the apoptosis-inducing Fas molecule on the target cell. NK cells use the former pathway exclusively. The protective role of the perforin-dependent pathway has been shown for infection with the noncytopathic lymphocytic choriomeningitis virus, for infection with Listeria monocytogenes, and for the elimination of tumor cells by T cells and NK cells. In contrast, perforin-dependent cytotoxicity is not involved in protection against the cytopathic vaccinia virus and vesicular stomatitis virus. LCMV-induced immunopathology and autoimmune diabetes have been found to require perforin-expression. A contribution of perforin-dependent cytotoxicity t...

605 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a single molecular target, and indeed a specific residue (N265) located within the GABAA receptor β3 subunit, is a major determinant of behavioral responses evoked by the intravenous anesthetics etomidate and propofol, whereas volatile anesthetic appear to act via a broader spectrum of molecular targets.
Abstract: General anesthetics are widely used in clinical practice. On the molecular level, these compounds have been shown to modulate the activity of various neuronal ion channels. However, the functional relevance of identified sites in mediating essential components of the general anesthetic state, such as immobility and hypnosis, is still unknown. Using gene-targeting technology, we generated mice harboring a subtle point mutation (N265M) in the second transmembrane region of the beta3 subunit of the GABA(A) receptor. In these mice, the suppression of noxious-evoked movements in response to the intravenous anesthetics etomidate and propofol is completely abolished, while only slightly decreased with the volatile anesthetics enflurane and halothane. beta3(N265M) mice also display a profound reduction in the loss of righting reflex duration in response to intravenous but not volatile anesthetics. In addition, electrophysiological recordings revealed that anesthetic agents were significantly less effective in enhancing GABA(A) receptor-mediated currents, and in decreasing spontaneous action potential firing in cortical brain slices derived from mutant mice. Taken together, our results demonstrate that a single molecular target, and indeed a specific residue (N265) located within the GABA(A) receptor beta3 subunit, is a major determinant of behavioral responses evoked by the intravenous anesthetics etomidate and propofol, whereas volatile anesthetics appear to act via a broader spectrum of molecular targets.

563 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1995-Science
TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Abstract: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death. Although much is known about the control of cell proliferation, less is known about the control of cell death. Physiologic cell death occurs primarily through an evolutionarily conserved form of cell suicide termed apoptosis. The decision of a cell to undergo apoptosis can be influenced by a wide variety of regulatory stimuli. Recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, autoimmune diseases, neurodegenerative disorders, and AIDS (acquired immunodeficiency syndrome). Treatments designed to specifically alter the apoptotic threshold may have the potential to change the natural progression of some of these diseases.

6,462 citations

Journal ArticleDOI
TL;DR: The evidence in favour of alternative macrophage activation by the TH2-type cytokines interleukin-4 (IL-4) and IL-13 is assessed, and its limits and relevance to a range of immune and inflammatory conditions are defined.
Abstract: The classical pathway of interferon-gamma-dependent activation of macrophages by T helper 1 (T(H)1)-type responses is a well-established feature of cellular immunity to infection with intracellular pathogens, such as Mycobacterium tuberculosis and HIV. The concept of an alternative pathway of macrophage activation by the T(H)2-type cytokines interleukin-4 (IL-4) and IL-13 has gained credence in the past decade, to account for a distinctive macrophage phenotype that is consistent with a different role in humoral immunity and repair. In this review, I assess the evidence in favour of alternative macrophage activation in the light of macrophage heterogeneity, and define its limits and relevance to a range of immune and inflammatory conditions.

5,930 citations

Journal ArticleDOI
14 Oct 1999-Nature
TL;DR: It is shown that expression of CCR7, a chemokine receptor that controls homing to secondary lymphoid organs, divides human memory T cells into two functionally distinct subsets, which are named central memory (TCM) and effector memory (TEM).
Abstract: Naive T lymphocytes travel to T-cell areas of secondary lymphoid organs in search of antigen presented by dendritic cells. Once activated, they proliferate vigorously, generating effector cells that can migrate to B-cell areas or to inflamed tissues. A fraction of primed T lymphocytes persists as circulating memory cells that can confer protection and give, upon secondary challenge, a qualitatively different and quantitatively enhanced response. The nature of the cells that mediate the different facets of immunological memory remains unresolved. Here we show that expression of CCR7, a chemokine receptor that controls homing to secondary lymphoid organs, divides human memory T cells into two functionally distinct subsets. CCR7- memory cells express receptors for migration to inflamed tissues and display immediate effector function. In contrast, CCR7+ memory cells express lymph-node homing receptors and lack immediate effector function, but efficiently stimulate dendritic cells and differentiate into CCR7- effector cells upon secondary stimulation. The CCR7+ and CCR7- T cells, which we have named central memory (TCM) and effector memory (TEM), differentiate in a step-wise fashion from naive T cells, persist for years after immunization and allow a division of labour in the memory response.

5,537 citations

Journal ArticleDOI
10 Mar 1995-Science
TL;DR: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells.
Abstract: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells. Various cells express Fas, whereas FasL is expressed predominantly in activated T cells. In the immune system, Fas and FasL are involved in down-regulation of immune reactions as well as in T cell-mediated cytotoxicity. Malfunction of the Fas system causes lymphoproliferative disorders and accelerates autoimmune diseases, whereas its exacerbation may cause tissue destruction.

4,190 citations

Journal ArticleDOI
TL;DR: A single acquired mutation of JAK2 was noted in more than half of patients with a myeloproliferative disorder and its presence in all erythropoietin-independent erythroid colonies demonstrates a link with growth factor hypersensitivity, a key biological feature of these disorders.

3,326 citations