scispace - formally typeset
Search or ask a question
Author

Birong Luo

Bio: Birong Luo is an academic researcher from Tianjin Normal University. The author has contributed to research in topics: Graphene & Quasar. The author has an hindex of 34, co-authored 101 publications receiving 3375 citations. Previous affiliations of Birong Luo include Pontifical Catholic University of Chile & Yunnan Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: A self-assembly approach is demonstrated that allows the synthesis of single-layer, single crystal and highly nitrogen-doped graphene domain arrays by self-organization of pyridine molecules on Cu surface at temperature as low as 300 °C.
Abstract: The ability to dope graphene is highly important for modulating electrical properties of graphene. However, the current route for the synthesis of N-doped graphene by chemical vapor deposition (CVD) method mainly involves high growth temperature using ammonia gas or solid reagent melamine as nitrogen sources, leading to graphene with low doping level, polycrystalline nature, high defect density and low carrier mobility. Here, we demonstrate a self-assembly approach that allows the synthesis of single-layer, single crystal and highly nitrogen-doped graphene domain arrays by self-organization of pyridine molecules on Cu surface at temperature as low as 300 °C. These N-doped graphene domains have a dominated geometric structure of tetragonal-shape, reflecting the single crystal nature confirmed by electron-diffraction measurements. The electrical measurements of these graphene domains showed their high carrier mobility, high doping level, and reliable N-doped behavior in both air and vacuum.

274 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the third-order nonlinear susceptibility of Graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy.
Abstract: Optical harmonic generation occurs when high intensity light (>1010 W m–2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing. Gate tunable and ultrabroadband third-harmonic generation can be achieved in graphene, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

201 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the third-order nonlinear susceptibility of Graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy.
Abstract: Optical harmonic generation occurs when high intensity light (>1010 W m–2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

152 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented improved point-source catalogs for the 2Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep field-South (E-CDFS) surveys, implementing a number of recent improvements in Chandra source-cataloging methodology.
Abstract: We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S) Surveys, implementing a number of recent improvements in Chandra source-cataloging methodology. For CDF-N/E-CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of 10−5 that also satisfy a binomial-probability source-selection criterion of $P\lt 0.004$/P < 0.002. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. CDF-N/Lehmer et al. E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having P of 0.004–0.1/0.002–0.1 and ${K}_{s}\leqslant 22.9/{K}_{s}\leqslant 22.3$ mag counterparts. For all $\approx 1800$ CDF-N and E-CDF-S sources, including the $\approx 500$ newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed active galactic nucleus and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of $\approx 1.5$–2.0 improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available.

151 citations

Journal ArticleDOI
TL;DR: In this paper, a spectral energy distribution (SED) fitting approach was proposed to select radio-excess sources amongst distant star-forming galaxies in the GOODS-Herschel (North) field and to reveal the presence of hidden, highly obscured AGN.
Abstract: Context. A tight correlation exists between far-infrared and radio emission for star-forming galaxies (SFGs), which seems to hold out to high redshifts (z {ap} 2). Any excess of radio emission over that expected from star formation processes is most likely produced by an active galactic nucleus (AGN), often hidden by large amounts of dust and gas. Identifying these radio-excess sources will allow us to study a population of AGN unbiased by obscuration and thus find some of the most obscured, Compton-thick AGN, which are in large part unidentified even in the deepest X-ray and infrared (IR) surveys. Aims: We present here a new spectral energy distribution (SED) fitting approach that we adopt to select radio-excess sources amongst distant star-forming galaxies in the GOODS-Herschel (North) field and to reveal the presence of hidden, highly obscured AGN. Methods: Through extensive SED analysis of 458 galaxies with radio 1.4 GHz and mid-IR 24 {$μ$}m detections using some of the deepest Chandra X-ray, Spitzer and Herschel infrared, and VLA radio data available to date, we have robustly identified a sample of 51 radio-excess AGN (~{}1300 deg$^{-2}$) out to redshift z {ap} 3. These radio-excess AGN have a significantly lower far-IR/radio ratio (q {lt} 1.68, 3{$σ$}) than the typical relation observed for star-forming galaxies (q {ap} 2.2). Results: We find that {ap}45% of these radio-excess sources have a dominant AGN component in the mid-IR band, while for the remainders the excess radio emission is the only indicator of AGN activity. The presence of an AGN is also confirmed by the detection of a compact radio core in deep VLBI 1.4 GHz observations for eight of our radio-excess sources ({ap}16%; {ap}66% of the VLBI detected sources in this field), with the excess radio flux measured from our SED analysis agreeing, to within a factor of two, with the radio core emission measured by VLBI. We find that the fraction of radio-excess AGN increases with X-ray luminosity reaching ~{}60% at L$_X$ {ap} 10$^{44}$ - 10$^{45}$ erg s$^{-1}$, making these sources an important part of the total AGN population. However, almost half (24/51) of these radio-excess AGN are not detected in the deep Chandra X-ray data, suggesting that some of these sources might be heavily obscured. Amongst the radio-excess AGN we can distinguish three groups of objects: i) AGN clearly identified in infrared (and often in X-rays), a fraction of which are likely to be distant Compton-thick AGN; ii) moderate luminosity AGN (L$_X$ {lsim} 10$^{43}$ erg s$^{-1}$) hosted in strong star-forming galaxies; and iii) a small fraction of low accretion-rate AGN hosted in passive (i.e. weak or no star-forming) galaxies. We also find that the specific star formation rates (sSFRs) of the radio-excess AGN are on average lower that those observed for X-ray selected AGN hosts, indicating that our sources are forming stars more slowly than typical AGN hosts, and possibly their star formation is progressively quenching. Tables 1, 3 and Appendices are available in electronic form at http://www.aanda.org

146 citations


Cited by
More filters
15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

Journal ArticleDOI
TL;DR: An electrocatalyst for hydrogen generation based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene is reported, which is robust and highly active in aqueous media with very low overpotentials.
Abstract: Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. Here we report an electrocatalyst for hydrogen generation based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene. This catalyst is robust and highly active in aqueous media with very low overpotentials (30 mV). A variety of analytical techniques and electrochemical measurements suggest that the catalytically active sites are associated with the metal centres coordinated to nitrogen. This unusual atomic constitution of supported metals is suggestive of a new approach to preparing extremely efficient single-atom catalysts.

1,262 citations

01 Jan 1985
TL;DR: In this article, a reexamination is conducted of the formation of dwarf, diffuse, metal-poor galaxies due to supernova-driven winds, in view of data on the systematic properties of dwarfs in the Local Group and Virgo Cluster.
Abstract: A reexamination is conducted of the formation of dwarf, diffuse, metal-poor galaxies due to supernova-driven winds, in view of data on the systematic properties of dwarfs in the Local Group and Virgo Cluster. The critical condition for global gas loss as a result of the first burst of star formation is that the virial velocity lie below an approximately 100 km/sec critical value. This leads, as observed, to two distinct classes of galaxies, encompassing the diffuse dwarfs, which primarily originate from typical density perturbations, and the normal, brighter galaxies, including compact dwarfs, which can originate only from the highest density peaks. This furnishes a statistical biasing mechanism for the preferential formation of bright galaxies in denser regions, enhancing high surface brightness galaxies' clustering relative to the diffusive dwarfs.

1,253 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the infrared (IR) 3-500μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data.
Abstract: We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.

1,235 citations