scispace - formally typeset
Search or ask a question
Author

Björn Baumeier

Bio: Björn Baumeier is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: GW approximation & Excited state. The author has an hindex of 20, co-authored 57 publications receiving 1935 citations. Previous affiliations of Björn Baumeier include Max Planck Society & University of Münster.


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications.
Abstract: Charge carrier dynamics in an organic semiconductor can often be described in terms of charge hopping between localized states. The hopping rates depend on electronic coupling elements, reorganization energies, and driving forces, which vary as a function of position and orientation of the molecules. The exact evaluation of these contributions in a molecular assembly is computationally prohibitive. Various, often semiempirical, approximations are employed instead. In this work, we review some of these approaches and introduce a software toolkit which implements them. The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications. All implemented methods are illustrated by studying charge transport in amorphous films of tris-(8-hydroxyquinoline)aluminum, a common organic semiconductor.

350 citations

Journal ArticleDOI
TL;DR: In this article, a comparative ab initio study of single-walled SiC, BN, and BeO nanotubes (NTs) in zigzag and armchair configurations is presented.
Abstract: We present the results of a comparative ab initio study of single-walled SiC, BN, and BeO nanotubes (NTs) in zigzag and armchair configurations. Within density functional theory, we employ self-interaction-corrected pseudopotentials that were shown previously to yield reliable results for both structural and electronic properties of related bulk crystals. Using these pseudopotentials, we investigate the dependence of the atomic relaxation, strain energy, Young's modulus, and electronic structure on nanotube diameter and compound ionicity. Qualitatively, the NTs of all three wide-band-gap compounds show similar radially buckled geometries upon atomic relaxation, similar strain energy progressions with NT diameter and a saturation of Young's modulus as well as the band gap energy for large NT diameters. The band gap progression with NT diameter, which is of crucial importance for device applications, is presented and analyzed in detail. For SiC and BN, the calculated band gap energies of zigzag NTs vary much stronger for small and medium diameters than those of their armchair counterparts showing a significant narrowing of the band gaps. In contrast, the band gap progression in zigzag and armchair BeO NTs shows a very peculiar behavior for small diameters. No band gap breakdown occurs and the gap goes through a minimum for zigzag BeO NTs. The qualitative difference in the nature of the lower conduction band states in SiC and BN NTs, as compared to BeO NTs, and the increasing ionicity of these compounds are shown to be responsible for the observed effects.

219 citations

Journal ArticleDOI
TL;DR: A detailed computational study on the accuracy and efficiency of density-functional theory based approaches to the determination of intermolecular transfer integrals and an optimal strategy for future simulations based on the full morphology is presented.
Abstract: Theoretical studies of charge transport in organic conducting systems pose a unique challenge since they must describe both extremely short-ranged and fast processes (charge tunneling) and extremely long-ranged and slow ones (molecular ordering). The description of the mobility of electrons and holes in the hopping regime relies on the determination of intermolecular hopping rates in large-scale morphologies. Using Marcus theory these rates can be calculated from intermolecular transfer integrals and on-site energies. Here we present a detailed computational study on the accuracy and efficiency of density-functional theory based approaches to the determination of intermolecular transfer integrals. First, it is demonstrated how these can be obtained from quantum-chemistry calculations by forming the expectation value of a dimer Fock operator with frontier orbitals of two neighboring monomers based on a projective approach. We then consider the prototypical example of one pair out of a larger morphology of tris(8-hydroxyquinolinato)aluminium (Alq3) and study the influence of computational parameters, e.g. the choice of basis sets, exchange–correlation functional, and convergence criteria, on the calculated transfer integrals. The respective results are compared in order to derive an optimal strategy for future simulations based on the full morphology.

213 citations

Journal ArticleDOI
TL;DR: It is shown how inclusion of mesoscale order resolves the controversy between experimental and theoretical results for the energy-level profile and alignment in a variety of photovoltaic systems, with direct experimental validation.
Abstract: Structural order in organic solar cells is paramount: it reduces energetic disorder, boosts charge and exciton mobilities, and assists exciton splitting. Owing to spatial localization of electronic states, microscopic descriptions of photovoltaic processes tend to overlook the influence of structural features at the mesoscale. Long-range electrostatic interactions nevertheless probe this ordering, making local properties depend on the mesoscopic order. Using a technique developed to address spatially aperiodic excitations in thin films and in bulk, we show how inclusion of mesoscale order resolves the controversy between experimental and theoretical results for the energy-level profile and alignment in a variety of photovoltaic systems, with direct experimental validation. Optimal use of long-range ordering also rationalizes the acceptor-donor-acceptor paradigm for molecular design of donor dyes. We predict open-circuit voltages of planar heterojunction solar cells in excellent agreement with experimental data, based only on crystal structures and interfacial orientation.

182 citations

Journal ArticleDOI
TL;DR: Results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.
Abstract: Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

99 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in organic field effect transistors (OFETs) are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays.
Abstract: Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future.

1,992 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Abstract: Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjug...

995 citations

Journal ArticleDOI
TL;DR: This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications.
Abstract: Mean-field electronic structure methods like Hartree–Fock, semilocal density functional approximations, or semiempirical molecular orbital (MO) theories do not account for long-range electron correlation (London dispersion interaction). Inclusion of these effects is mandatory for realistic calculations on large or condensed chemical systems and for various intramolecular phenomena (thermochemistry). This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications. The most prominent correction schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii) semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well as pros and cons of these methods are critically discussed, and typical examples and benchmarks on molecular complexes and crystals are provided. Although there are some areas for furthe...

932 citations

Journal ArticleDOI
TL;DR: The historical development and current state of the art in this rapidly expanding field of research is summarized, which has become one of the key exploration areas of modern heterocyclic chemistry.
Abstract: Two-dimensionally extended, polycyclic heteroaromatic molecules (heterocyclic nanographenes) are a highly versatile class of organic materials, applicable as functional chromophores and organic semiconductors. In this Review, we discuss the rich chemistry of large heteroaromatics, focusing on their synthesis, electronic properties, and applications in materials science. This Review summarizes the historical development and current state of the art in this rapidly expanding field of research, which has become one of the key exploration areas of modern heterocyclic chemistry.

823 citations