scispace - formally typeset
Search or ask a question
Author

Blair Perot

Bio: Blair Perot is an academic researcher from University of Massachusetts Amherst. The author has contributed to research in topics: Turbulence & K-epsilon turbulence model. The author has an hindex of 12, co-authored 25 publications receiving 1674 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a series of experiments are presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness.
Abstract: A series of experiments is presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness. These ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of microposts and microridges which are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the pressure drop as a function of the flow rate for a series of microchannel geometries and ultrahydrophobic surface designs. Pressure drop reductions up to 40% and apparent slip lengths larger than 20 μm are obtained using ultrahydrophobic surfaces. No drag reduction is observed for smooth hydrophobic surfaces. A confocal surface metrology system was used to measure the deflection of an air–water interface that is formed between microposts and supported by surface tension. This shear-free interface reduces the ...

970 citations

Journal ArticleDOI
TL;DR: It is shown that with certain choices of the velocity interpolation, unstructured staggered mesh discretizations of the divergence form of the Navier?Stokes equations can conserve kinetic energy and momentum both locally and globally.

277 citations

Journal ArticleDOI
TL;DR: An exact fractional step or projection method for solving the incompressible Navier?Stokes equations is analyzed in this article, which is applied to both structured and unstructured staggered mesh schemes.

144 citations

Journal ArticleDOI
TL;DR: In this paper, a moving staggered mesh discretization for the numerical simulation of incompressible flow problems involving free-surfaces is presented, which uses the staggered mesh to obtain speed and conservation properties.

101 citations

Journal ArticleDOI
TL;DR: A three-dimensional unstructured mesh discretization of the rotational from of the incompressible Navier-Stokes is presented and is shown to conserve mass, kinetic energy, and vorticity to machine precision both locally and globally.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A large selection of solution methods for linear systems in saddle point form are presented, with an emphasis on iterative methods for large and sparse problems.
Abstract: Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.

2,253 citations

Journal ArticleDOI
TL;DR: In this article, the roughness of a solid is discussed, and it is shown that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness.
Abstract: We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.

2,219 citations

Journal ArticleDOI
Xi Zhang1, Feng Shi1, Jia Niu1, Yugui Jiang1, Zhiqiang Wang1 
TL;DR: A superhydrophobic surface is a surface with a water contact angle close to or higher than 150° as discussed by the authors, and it is the combination of surface roughness and low-surface-energy modification that leads to super-hydrophobicity.
Abstract: A superhydrophobic surface is a surface with a water contact angle close to or higher than 150°. In this feature article, we review the historical and present research on superhydrophobic surfaces, including the characterization of superhydrophobicity, different ways to fabricate rough surfaces, and low-surface-energy modifications on inorganic and organic rough surfaces. It is the combination of surface roughness and low-surface-energy modification that leads to superhydrophobicity. Notably, research on superhydrophobic surfaces has not only fundamental interest but various possible functional applications in micro- and nano-materials and devices.

1,588 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the many levels possible for the numerical prediction of a turbulent flow, the target being a complete airplane, turbine, or car, and their hope is to stimulate reflection, discussion, and planning.

1,264 citations

Journal ArticleDOI
TL;DR: Design, and Applications Shutao Wang,“, Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science.
Abstract: Design, and Applications Shutao Wang,†,‡ Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, BeiHang University, Beijing 100191, People’s Republic of China Department of Biomedical Sciences, City University of Hong Kong, Hong Kong P6903, People’s Republic of China

1,218 citations